scholarly journals Deep learning approach to text analysis for human emotion detection from big data

2022 ◽  
Vol 31 (1) ◽  
pp. 113-126
Author(s):  
Jia Guo

Abstract Emotional recognition has arisen as an essential field of study that can expose a variety of valuable inputs. Emotion can be articulated in several means that can be seen, like speech and facial expressions, written text, and gestures. Emotion recognition in a text document is fundamentally a content-based classification issue, including notions from natural language processing (NLP) and deep learning fields. Hence, in this study, deep learning assisted semantic text analysis (DLSTA) has been proposed for human emotion detection using big data. Emotion detection from textual sources can be done utilizing notions of Natural Language Processing. Word embeddings are extensively utilized for several NLP tasks, like machine translation, sentiment analysis, and question answering. NLP techniques improve the performance of learning-based methods by incorporating the semantic and syntactic features of the text. The numerical outcomes demonstrate that the suggested method achieves an expressively superior quality of human emotion detection rate of 97.22% and the classification accuracy rate of 98.02% with different state-of-the-art methods and can be enhanced by other emotional word embeddings.

2021 ◽  
Vol 47 (05) ◽  
Author(s):  
NGUYỄN CHÍ HIẾU

Knowledge Graphs are applied in many fields such as search engines, semantic analysis, and question answering in recent years. However, there are many obstacles for building knowledge graphs as methodologies, data and tools. This paper introduces a novel methodology to build knowledge graph from heterogeneous documents.  We use the methodologies of Natural Language Processing and deep learning to build this graph. The knowledge graph can use in Question answering systems and Information retrieval especially in Computing domain


2021 ◽  
Author(s):  
Nathan Ji ◽  
Yu Sun

The digital age gives us access to a multitude of both information and mediums in which we can interpret information. A majority of the time, many people find interpreting such information difficult as the medium may not be as user friendly as possible. This project has examined the inquiry of how one can identify specific information in a given text based on a question. This inquiry is intended to streamline one's ability to determine the relevance of a given text relative to his objective. The project has an overall 80% success rate given 10 articles with three questions asked per article. This success rate indicates that this project is likely applicable to those who are asking for content level questions within an article.


2017 ◽  
Vol 24 (4) ◽  
pp. 813-821 ◽  
Author(s):  
Anne Cocos ◽  
Alexander G Fiks ◽  
Aaron J Masino

Abstract Objective Social media is an important pharmacovigilance data source for adverse drug reaction (ADR) identification. Human review of social media data is infeasible due to data quantity, thus natural language processing techniques are necessary. Social media includes informal vocabulary and irregular grammar, which challenge natural language processing methods. Our objective is to develop a scalable, deep-learning approach that exceeds state-of-the-art ADR detection performance in social media. Materials and Methods We developed a recurrent neural network (RNN) model that labels words in an input sequence with ADR membership tags. The only input features are word-embedding vectors, which can be formed through task-independent pretraining or during ADR detection training. Results Our best-performing RNN model used pretrained word embeddings created from a large, non–domain-specific Twitter dataset. It achieved an approximate match F-measure of 0.755 for ADR identification on the dataset, compared to 0.631 for a baseline lexicon system and 0.65 for the state-of-the-art conditional random field model. Feature analysis indicated that semantic information in pretrained word embeddings boosted sensitivity and, combined with contextual awareness captured in the RNN, precision. Discussion Our model required no task-specific feature engineering, suggesting generalizability to additional sequence-labeling tasks. Learning curve analysis showed that our model reached optimal performance with fewer training examples than the other models. Conclusions ADR detection performance in social media is significantly improved by using a contextually aware model and word embeddings formed from large, unlabeled datasets. The approach reduces manual data-labeling requirements and is scalable to large social media datasets.


Natural languages are ambiguous and computers are not capable of understanding the natural languages in the way people really understand them. Natural Language Processing (NLP) is concerned with the development of computational models based on the aspects of human language processing. Question Answering (QA) system is a field of Natural Language Processing that provides precise answer for the user question which is given in natural language. In this work, a MemN2N model based question answering system is implemented and its performance is evaluated with a complex question answering tasks using bAbI dataset of three different language text corpuses. The scope of this work is to understand the language independent and dependant aspects of a deep learning network. For this, we will study the performance of the deep learning network by training and testing it with different kinds of question answering tasks with different languages and also try to understand the difference in performance with respect to the languages


2022 ◽  
Vol 355 ◽  
pp. 03028
Author(s):  
Saihan Li ◽  
Zhijie Hu ◽  
Rong Cao

Natural Language inference refers to the problem of determining the relationships between a premise and a hypothesis, it is an emerging area of natural language processing. The paper uses deep learning methods to complete natural language inference task. The dataset includes 3GPP dataset and SNLI dataset. Gensim library is used to get the word embeddings, there are 2 methods which are word2vec and doc2vec to map the sentence to array. 2 deep learning models DNNClassifier and Attention are implemented separately to classify the relationship between the proposals from the telecommunication area dataset. The highest accuracy of the experiment is 88% and we found that the quality of the dataset decided the upper bound of the accuracy.


Sign in / Sign up

Export Citation Format

Share Document