A Segmentation Algorithm used in Conjunction with Artificial Neural Networks for the Recognition of Real-World Postal Addresses

1997 ◽  
Vol 7 (3-4) ◽  
Author(s):  
M. Blumenstein ◽  
B. Verma
2014 ◽  
pp. 8-20
Author(s):  
Kurosh Madani

In a large number of real world dilemmas and related applications the modeling of complex behavior is the central point. Over the past decades, new approaches based on Artificial Neural Networks (ANN) have been proposed to solve problems related to optimization, modeling, decision making, classification, data mining or nonlinear functions (behavior) approximation. Inspired from biological nervous systems and brain structure, Artificial Neural Networks could be seen as information processing systems, which allow elaboration of many original techniques covering a large field of applications. Among their most appealing properties, one can quote their learning and generalization capabilities. The main goal of this paper is to present, through some of main ANN models and based techniques, their real application capability in real world industrial dilemmas. Several examples through industrial and real world applications have been presented and discussed.


Author(s):  
Ricardo T. A. de Oliveira ◽  
Thaize Fernandes O. de Assis ◽  
Paulo Renato A. Firmino ◽  
Tiago A. E. Ferreira ◽  
Adriano L. I. Oliveira

Author(s):  
Julián Dorado ◽  
Nieves Pedreira ◽  
Mónica Miguelez

This chapter presents the use of Artificial Neural Networks (ANN) and Evolutionary Computation (EC) techniques to solve real-world problems including those with a temporal component. The development of the ANN maintains some problems from the beginning of the ANN field that can be palliated applying EC to the development of ANN. In this chapter, we propose a multilevel system, based on each level in EC, to adjust the architecture and to train ANNs. Finally, the proposed system offers the possibility of adding new characteristics to the processing elements (PE) of the ANN without modifying the development process. This characteristic makes possible a faster convergence between natural and artificial neural networks.


Author(s):  
Ruhul A. Sarker ◽  
Hussein A. Abbass

Artificial Neural Networks (ANNs) have become popular among researchers and practitioners for modeling complex real-world problems. One of the latest research areas in this field is evolving ANNs. In this chapter, we investigate the simultaneous evolution of network architectures and connection weights in ANNs. In simultaneous evolution, we use the well-known concept of multiobjective optimization and subsequently evolutionary multiobjective algorithms to evolve ANNs. The results are promising when compared with the traditional ANN algorithms. It is expected that this methodology would provide better solutions to many applications of ANNs.


Sign in / Sign up

Export Citation Format

Share Document