Exergy parametric study of carbon monoxide oxidation in moist air

2015 ◽  
Vol 40 (4) ◽  
Author(s):  
Ferhat Souidi ◽  
Toufik Benmalek ◽  
Billel Yesaad ◽  
Mouloud Baik

AbstractThis study aims to analyze the oxidation of carbon monoxide in moist air from the second thermodynamic law aspect. A mathematical model of laminar premixed flame in a stagnation point flow has been achieved by numerical solution of the boundary layer equation using a self-made code. The chemical kinetic mechanism for flameless combustion of fuel, which is a mixture of carbon monoxide, oxygen, and water vapor, is modeled by 34 elementary reactions that incorporate (09) nine chemical species:

Author(s):  
Rafael Torres Teixeira ◽  
Rafaela Sehnem ◽  
Letícia Kaufmann ◽  
Daniela Buske ◽  
Regis Sperotto de Quadros

Author(s):  
Shaoping Shi ◽  
Daniel Lee ◽  
Sandra McSurdy ◽  
Michael McMillian ◽  
Steven Richardson ◽  
...  

In any theoretical investigation of ignition processes in natural gas reciprocating engines, physical and chemical mechanisms must be adequately modeled and validated in an independent manner. The Rapid Compression Machine (RCM) has been used in the past as a tool to validate both autoignition models as well as turbulent mixing effects. In this study, two experimental cases were examined. In the first experimental case, the experimental measurements of Lee and Hochgreb (1998a) were chosen to validate the simulation results. In their experiments, hydrogen/oxygen/argon mixtures were used as reactants. In the simulations, a reduced chemical kinetic mechanism consisting of 10 species and 19 elementary reactions coupled to a CFD software, Fluent 6, was used to simulate the autoignition. The ignition delay from the simulation agreed very well with that from the experimental data of Lee and Hochgreb, (1998b). In the second case, experimental data derived from an RCM with two opposed, pneumatically driven pistons (Brett et al., 2001) were used to study the autoignition of methane/oxygen/argon mixtures. The reduced chemical kinetic mechanism DRM22, derived from the GRI-Mech reaction scheme coupled to Fluent 6, was applied in the simulations. The DRM22 scheme included 22 species and 104 reactions. When methane/oxygen/argon mixture were simulated for the RCM, the ignition delay deviated about 15% from the experimental results. The simulation approaches as well as the validation results are discussed in detail in this paper. The paper also discusses an evaluation of reduced reaction models available in the literature for subsequent Fluent modeling.


2005 ◽  
Author(s):  
Mohsen M. Abou-Ellail ◽  
Karam R. Beshay ◽  
David R. Halka

The present work is a numerical simulation of the, piloted, non-premixed, methane–air flame structure in a new mathematical imaging domain. This imaging space has the mixture fraction of diffusion flame Z1 and mixture fraction of pilot flame Z2 as independent coordinates to replace the usual physical space coordinates. The predications are based on the solution of two–dimensional set of transformed second order partial differential conservation equations describing the mass fractions of O2, CH4, CO2, CO, H2O, H2 and sensible enthalpy of the combustion products which are rigorously derived and solved numerically. A three–step chemical kinetic mechanism is adopted. This was deduced in a systematic way from a detailed chemical kinetic mechanism by Peters (1985). The rates for the three reaction steps are related to the rates of the elementary reactions of the full reaction mechanism. The interaction of the pilot flame with the non-premixed flame and the resulting modifications to the structure and chemical kinetics of the flame are studied numerically for different values of the scalar dissipation rate tensor. The dissipation rate tensor represents the flame stretching along Z1, the main mixture fraction, and in the perpendicular direction, along Z2, the pilot mixture fraction. The computed flame temperature contours are plotted in the Z1-Z2 plane for fixed values of the dissipation rate along Z1 and Z2.These temperature contours show that the flame will become unstable when the dissipate rates along Z1 and Z2 increase, simultaneously, to the limiting value for complete flame extinction of 45 s−1. However, the diffusion flame will extinguish for dissipate rates less than 20 1/s, if unpiloted. It is also noticed that the flame will remain stable if the dissipation rate along Z2 is increased to the limiting value, while the dissipation rate, along Z2, remains constant at a value less than 30 s−1.


2018 ◽  
Vol 8 (2) ◽  
Author(s):  
O. T. Sosso Mayi ◽  
F. Lontsi ◽  
M. B. Obounou Akong ◽  
J. Tonyi Agbébavi

Exhausting pollutant gas in a plug flow micro reactor are identified, described and predicted in this paper. For this, a premixed methane/air micro flame was simulated by a simplified chemical kinetics mechanism with four equations of Jones and Lindstedt. In addition to the Jones and Lindstedt model, one chemical kinetic mechanism with three equations describing the formation of thermal NO was integrated in Comsol 4.2a code, all that equations describing the production process and disappearance of the major chemical species. Simulations in stoichiometric and lean conditions with equivalent ratio ф equal to 0.9 and 0.7 show that the simulations with Jones and Lindstedt model provide a stable flame with the temperatures of the same order as that obtained with a detailed chemical kinetic mechanism as reported in the literature. Production of carbon dioxide (CO2) varies with the richness of the mixture. It is high with ф = 1 and in the order of 250 ppm, this value remains smaller than the required threshold for breathable air. Carbon monoxide (CO) is not found in the products of combustion due to the high temperatures at the outlet of the microreactor in the three cases


2011 ◽  
Vol 158 (3) ◽  
pp. 434-445 ◽  
Author(s):  
Chitralkumar V. Naik ◽  
Karthik V. Puduppakkam ◽  
Abhijit Modak ◽  
Ellen Meeks ◽  
Yang L. Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document