scholarly journals Thermoelectric and Thermomagnetic Effects in Kaluza’s Kinetic Theory

2017 ◽  
Vol 42 (4) ◽  
Author(s):  
Alma R. Sagaceta-Mejía ◽  
Alfredo Sandoval-Villalbazo ◽  
Ana L. García-Perciante

AbstractA five-dimensional treatment of the Boltzmann equation is used to establish the constitutive equations that relate thermodynamic fluxes and forces up to first order in the gradients for simple charged fluids in the presence of electromagnetic fields. The formalism uses the

Author(s):  
Sauro Succi

Kinetic theory is the branch of statistical physics dealing with the dynamics of non-equilibrium processes and their relaxation to thermodynamic equilibrium. Established by Ludwig Boltzmann (1844–1906) in 1872, his eponymous equation stands as its mathematical cornerstone. Originally developed in the framework of dilute gas systems, the Boltzmann equation has spread its wings across many areas of modern statistical physics, including electron transport in semiconductors, neutron transport, quantum-relativistic fluids in condensed matter and even subnuclear plasmas. In this Chapter, a basic introduction to the Boltzmann equation in the context of classical statistical mechanics shall be provided.


1967 ◽  
Vol 20 (3) ◽  
pp. 205 ◽  
Author(s):  
Kallash Kumar

The Chapman-Enskog method of solving the Boltzmann equation is presented in a simpler and more efficient form. For this purpose all the operations involving the usual polynomials are carried out in spherical polar coordinates, and the Racah-Wigner methods of dealing with irreducible tensors are used throughout. The expressions for the collision integral and the associated bracket expressions of kinetic theory are derived in terms of Talmi coefficients, which have been extensively studied in the harmonic oscillator shell model of nuclear physics.


Sign in / Sign up

Export Citation Format

Share Document