A Simple Method for Prediction of Effective Core Area and Index of Refraction of Single-mode Graded Index Fiber in the Low V Region

2014 ◽  
Vol 35 (4) ◽  
Author(s):  
Angshuman Majumdar ◽  
Satabdi Das ◽  
Sankar Gangopadhyay

AbstractBased on the simple power series formulation of fundamental mode developed by Chebyshev formalism in the low V region, we prescribe analytical expression for effective core area of graded index fiber. Taking step and parabolic index fibers as examples, we estimate the effective core areas as well as effective refractive index for different normalized frequencies (V number) having low values. We also show that our estimations match excellently with the available exact results. The concerned predictions by our method require little computation. Thus, this simple but accurate formalism will be user friendly for the system engineers.

2000 ◽  
Vol 21 (6) ◽  
pp. 225-228 ◽  
Author(s):  
P. Patra ◽  
S. Gangopadhyay ◽  
S. N. Sarkar

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Jayanta Aich ◽  
Angshuman Majumdar ◽  
Sankar Gangopadhyay

Abstract A new technique is presented for computing very useful propagation parameters like effective core area and effective index of refraction of mono-mode dispersion shifted and dispersion flattened fibers both in the presence and in the absence of Kerr nonlinearity. The technique involves application of accurate but simple expressions for modal fields developed by Chebyshev formalism. The study of the influence of Kerr nonlinearity on the aforementioned parameters, however, requires the application of the method of iteration. For the purpose of such investigation, in linear as well as nonlinear region, we take some typically used dispersion shifted and dispersion flattened fibers and we show that the results found by our simple formalism are in excellent agreement with those obtained by using complex finite element method. Further, the necessary evaluation by our simple method needs very less computations. Thus, our formalism generates ample opportunity for applications in many areas in the field of nonlinear optics.


Photonics ◽  
2018 ◽  
Vol 5 (4) ◽  
pp. 37 ◽  
Author(s):  
Anton V. Bourdine ◽  
Vladimir A. Burdin ◽  
Vijay Janyani ◽  
Ashish Kumar Ghunawat ◽  
Ghanshyam Singh ◽  
...  

This work presents an alternative fast and simple method for the design of a refractive index profile of silica multimode optical fibers (MMFs) with extremely enlarged core diameters of up to 100 µm for laser-based multi-gigabit short-range optical networks. We demonstrate some results of 100 µm core MMF graded index profile optimization performed by a proposed solution, which provides a selected mode staff differential mode delay (DMD) reduction over the “O”-band under particular launching conditions. Earlier on, a developed alternative model for a piecewise regular multimode fiber optic link operating in a few-mode regime for the computation of laser-excited optical pulse dynamics during its propagation over an irregular silica graded-index MMF with an extremely large core diameter, is utilized to estimate the potentiality of fiber optic links with the described MMFs. Here, we also present the comparison results of the simulation of 10GBase-LX optical signal transmission over 100 µm core MMFs with conventional and optimized graded-index refractive index profiles.


Optik ◽  
2016 ◽  
Vol 127 (13) ◽  
pp. 5295-5300
Author(s):  
Angshuman Majumdar ◽  
Subhalaxmi Chakraborty ◽  
Sankar Gangopadhyay

Sign in / Sign up

Export Citation Format

Share Document