Effect of osteopathic manipulation on gait asymmetry

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Cherice N. Hill ◽  
M’Lindsey Romero ◽  
Mark Rogers ◽  
Robin M. Queen ◽  
Per Gunnar Brolinson

Abstract Context Movement and loading asymmetry are associated with an increased risk of musculoskeletal injury, disease progression, and suboptimal recovery. Osteopathic structural screening can be utilized to determine areas of somatic dysfunction that could contribute to movement and loading asymmetry. Osteopathic manipulation treatments (OMTs) targeting identified somatic dysfunctions can correct structural asymmetries and malalignment, restoring the ability for proper compensation of stresses throughout the body. Little is currently known about the ability for OMTs to reduce gait asymmetries, thereby reducing the risk of injury, accelerated disease progression, and suboptimal recovery. Objectives To demonstrate whether osteopathic screening and treatment could alter movement and loading asymmetry during treadmill walking. Methods Forty-two healthy adults (20 males, 22 females) between the ages of 18 and 35 were recruited for this prospective intervention. Standardized osteopathic screening exams were completed by a single physician for each participant, and osteopathic manipulation was performed targeting somatic dysfunctions identified in the screening exam. Three-dimensional (3-D) biomechanical assessments, including the collection of motion capture and force plate data, were performed prior to and following osteopathic manipulation to quantify gait mechanics. Motion capture and loading data were processed utilizing Qualisys Track Manager and Visual 3D software, respectively. Asymmetry in the following temporal, kinetic, and kinematic measures was quantified utilizing a limb symmetry index (LSI): peak vertical ground reaction force, the impulse of the vertical ground reaction force, peak knee flexion angle, step length, stride length, and stance time. A 2-way repeated-measures analysis of variance model was utilized to evaluate the effects of time (pre/post manipulation) and sex (male/female) on each measure of gait asymmetry. Results Gait asymmetry in the peak vertical ground reaction force (−0.6%, p=0.025) and the impulse of the vertical ground reaction force (−0.3%, p=0.026) was reduced in males following osteopathic manipulation. There was no difference in gait asymmetry between time points in females. Osteopathic manipulation did not impact asymmetry in peak knee flexion angle, step length, stride length, or stance time. Among the participants, 59.5% (25) followed the common compensatory pattern, whereas 40.5% (17) followed the uncommon compensatory pattern. One third (33.3%, 14) of the participants showed decompensation at the occipitoatlantal (OA) junction, whereas 26.2% (11), one third (33.3%, 14), and 26.2% (11) showed decompensation at the cervicothoracic (CT), thoracolumbar (TL), and lumbosacral (LS) junctions, respectively. Somatic dysfunction at the sacrum, L5, right innominate, and left innominate occurred in 88.1% (37), 69.0% (29), 97.6% (41), and 97.6% (41) of the participants, respectively. Conclusions Correcting somatic dysfunction can influence gait asymmetry in males; the sex-specificity of the observed effects of osteopathic manipulation on gait asymmetry is worthy of further investigation. Osteopathic structural examinations and treatment of somatic dysfunctions may improve gait symmetry even in asymptomatic individuals. These findings encourage larger-scale investigations on the use of OMT to optimize gait, prevent injury and the progression of disease, and aid in recovery after surgery.

2020 ◽  
Vol 29 (8) ◽  
pp. 1069-1074
Author(s):  
Aiko Sakurai ◽  
Kengo Harato ◽  
Yutaro Morishige ◽  
Shu Kobayashi ◽  
Yasuo Niki ◽  
...  

Context: Toe direction is an important factor affecting knee biomechanics during various movements. However, it is still unknown whether toe direction will affect trunk and pelvic movements. Objective: To examine and clarify the effects of toe directions on biomechanics of trunk and pelvis as well as lower-extremities during single-leg drop landing (SLDL). Design: Descriptive laboratory study. Setting: Research laboratory. Participants: A total of 27 male recreational-level athletes. Intervention(s): Subjects performed SLDL under 3 different toe directions, including 0° (toe neutral), 20° (toe-in [TI]), and −20° (toe-out). SLDL was captured using a motion analysis system. Nondominant leg (27 left) was chosen for the analysis. Main Outcome Measures: Peak values of kinematic and kinetic parameters during landing phase were assessed. In addition, those parameters at the timing of peak vertical ground reaction force were also assessed. The data were statistically compared among 3 different toe directions using 1-way repeated measures of analysis of variance or Friedman χ2 r test. Results: Peak knee abduction angle and moment in TI were significantly larger than in toe neutral and toe-out (P < .001). Moreover, peak greater anterior inclination, greater inclination, and rotation of trunk and pelvis toward the nonlanding side were seen in TI (P < .001). At the timing of peak vertical ground reaction force, trunk inclined to the landing side with larger knee abduction angle in TI (P < .001). Conclusions: Several previous studies suggested that larger knee abduction angle and moment on landing side as well as trunk and pelvic inclinations during landing tasks were correlated with knee ligament injury. However, it is still unknown concerning the relationship between toe direction and trunk/pelvis movements during landing tasks. From the present study, TI during SLDL would strongly affect biomechanics of trunk and pelvis as well as knee joint, compared with toe neutral and toe-out.


2021 ◽  
Vol 76 (1) ◽  
pp. 161-173
Author(s):  
Qiang Zhang ◽  
Mianfang Ruan ◽  
Navrag B. Singh ◽  
Lingyan Huang ◽  
Xin Zhang ◽  
...  

Abstract Few studies have focused on the effect of fatigue severity on landing strategy. This study aimed to investigate the effect of fatigue progression on ground reaction force during landing. Eighteen participants performed a fatigue exercise protocol. Then participants performed drop landings at three levels of fatigue: no fatigue, medium fatigue, and severe fatigue. Multiple linear regression was conducted to identify the predictors of the peak vertical ground reaction force at each level of fatigue. Two-way ANOVAs were conducted to test the effect of fatigue on the vertical ground reaction force and the predictors. For the vertical ground reaction force, the knee joint stiffness and the knee angle at initial contact were the main predictors at no fatigue. The peak knee flexion angle and knee power were the main predictors at medium fatigue. However, the peak ankle plantarflexion moments became the main predictor at severe fatigue. The vertical ground reaction force decreased from no to medium fatigue (p = 0.001), and then increased from medium to severe fatigue (p = 0.034). The knee joint stiffness decreased from no to medium fatigue (p = 0.049), and then remained unchanged from medium to severe fatigue. The peak knee flexion angle increased from no to medium fatigue (p = 0.001), and then slightly decreased from medium to severe fatigue (p = 0.051). The results indicate that fatigue progression causes a transition from stiff to soft landing, and then to stiff landing. Participants used ankle joints more to control the landing intensity at severe fatigue.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0243221
Author(s):  
Helia Mahzoun Alzakerin ◽  
Yannis Halkiadakis ◽  
Kristin D. Morgan

Gait asymmetry is often observed in populations with varying degrees of neuromuscular control. While changes in vertical ground reaction force (vGRF) peak magnitude are associated with altered limb loading that can be observed during asymmetric gait, the challenge is identifying techniques with the sensitivity to detect these altered movement patterns. Autoregressive (AR) modeling has successfully delineated between healthy and pathological gait during running; but has been little explored in walking. Thus, AR modeling was implemented to assess differences in vGRF pattern dynamics during symmetric and asymmetric walking. We hypothesized that the AR model coefficients would better detect differences amongst the symmetric and asymmetric walking conditions than the vGRF peak magnitude mean. Seventeen healthy individuals performed a protocol that involved walking on a split-belt instrumented treadmill at different symmetric (0.75m/s, 1.0 m/s, 1.5 m/s) and asymmetric (Side 1: 0.75m/s-Side 2:1.0 m/s; Side 1:1.0m/s-Side 2:1.5 m/s) gait conditions. Vertical ground reaction force peaks extracted during the weight-acceptance and propulsive phase of each step were used to construct a vGRF peak time series. Then, a second order AR model was fit to the vGRF peak waveform data to determine the AR model coefficients. The resulting AR coefficients were plotted on a stationarity triangle and their distance from the triangle centroid was computed. Significant differences in vGRF patterns were detected amongst the symmetric and asymmetric conditions using the AR modeling coefficients (p = 0.01); however, no differences were found when comparing vGRF peak magnitude means. These findings suggest that AR modeling has the sensitivity to identify differences in gait asymmetry that could aid in monitoring rehabilitation progression.


2020 ◽  
Vol 55 (7) ◽  
pp. 717-723 ◽  
Author(s):  
Derek R. Dewig ◽  
Jonathan S. Goodwin ◽  
Brian G. Pietrosimone ◽  
J. Troy Blackburn

Context Anterior cruciate ligament (ACL) injury risk can be assessed from landing biomechanics. Greater hamstrings stiffness is associated with a landing-biomechanics profile consistent with less ACL loading but is difficult to assess in the clinical setting. Eccentric hamstrings strength can be easily evaluated by clinicians and may provide a surrogate measure for hamstrings stiffness. Objective To examine associations among eccentric hamstrings strength, hamstrings stiffness, and landing biomechanics linked to ACL injury risk. Design Cross-sectional study. Setting Research laboratory. Patients or Other Participants A total of 34 uninjured, physically active participants (22 women, 12 men; age = 20.2 ± 1.6 years, height = 171.5 ± 9.7 cm, mass = 67.1 ± 12.7 kg). Intervention(s) We collected eccentric hamstrings strength, active hamstrings stiffness, and double- and single-legged landing biomechanics during a single session. Main Outcome Measure(s) Bivariate associations were conducted between eccentric hamstrings strength and hamstrings stiffness, vertical ground reaction force, internal knee-extension moment, internal knee-varus moment, anterior tibial shear force, knee sagittal-plane angle at initial ground contact, peak knee-flexion angle, knee frontal-plane angle at initial ground contact, peak knee-valgus angle, and knee-flexion displacement using Pearson product moment correlations or Spearman rank-order correlations. Results We observed no association between hamstrings stiffness and eccentric hamstrings strength (r = 0.029, P = .44). We also found no association between hamstrings stiffness and landing biomechanics. However, greater peak eccentric strength was associated with less vertical ground reaction force in both the double-legged (r = −0.331, P = .03) and single-legged (r = −0.418, P = .01) landing conditions and with less internal knee-varus moment in the single-legged landing condition (r = −0.326, P = .04). Conclusions Eccentric hamstrings strength was associated with less vertical ground reaction force during both landing tasks and less internal knee-varus moment during the single-legged landing but was not an acceptable clinical estimate of active hamstrings stiffness.


2021 ◽  
pp. 036354652110237
Author(s):  
Alexander T. Peebles ◽  
Blaise Williams ◽  
Robin M. Queen

Background: Proper lower extremity biomechanics during bilateral landing is important for reducing injury risk in athletes returning to sports after anterior cruciate ligament reconstruction (ACLR). Although landing is a quick ballistic movement that is difficult to modify, squatting is a slower cyclic movement that is ideal for motor learning. Hypothesis: There is a relationship between lower extremity biomechanics during bilateral landing and bilateral squatting in patients with an ACLR. Study Design: Descriptive laboratory study. Methods: A total of 41 patients after a unilateral ACLR (24 men, 17 women; 5.9 ± 1.4 months after ACLR) completed 15 unweighted bilateral squats and 10 bilateral stop-jumps. Three-dimensional lower extremity kinematics and kinetics were collected, and peak knee abduction angle, knee abduction/adduction range of motion, peak vertical ground-reaction force limb symmetry index (LSI), vertical ground-reaction force impulse LSI, and peak knee extension moment LSI were computed during the descending phase of the squatting and landing tasks. Wilcoxon signed-rank tests were used to compare each outcome between limbs, and Spearman correlations were used to compare outcomes between the squatting and landing tasks. Results: The peak vertical ground reaction force, the vertical ground reaction force impulse, and the peak knee extension moment were reduced in the surgical (Sx) limb relative to the nonsurgical (NSx) limb during both the squatting and landing tasks ( P < .001). The relationship between squatting and landing tasks was strong for the peak knee abduction angle ( R = 0.697-0.737; P < .001); moderate for the frontal plane knee range of motion (NSx: R = 0.366, P = .019; Sx: R = 0.418, P = 0.007), the peak knee extension moment LSI ( R = 0.573; P < .001), the vertical ground reaction force impulse LSI ( R = 0.382; P < .014); and weak for the peak vertical ground reaction force LSI ( R = 0.323; P = .039). Conclusion: Patients who have undergone an ACLR continue to offload their surgical limb during both squatting and landing. Additionally, there is a relationship between movement deficits during squatting and movement deficits during landing in patients with an ACLR preparing to return to sports. Clinical Relevance: As movement deficits during squatting and landing were related before return to sports, this study suggests that interventional approaches to improve squatting biomechanics may translate to improved landing biomechanics in patients with an ACLR.


2019 ◽  
Vol 126 (5) ◽  
pp. 1315-1325 ◽  
Author(s):  
Andrew B. Udofa ◽  
Kenneth P. Clark ◽  
Laurence J. Ryan ◽  
Peter G. Weyand

Although running shoes alter foot-ground reaction forces, particularly during impact, how they do so is incompletely understood. Here, we hypothesized that footwear effects on running ground reaction force-time patterns can be accurately predicted from the motion of two components of the body’s mass (mb): the contacting lower-limb (m1 = 0.08mb) and the remainder (m2 = 0.92mb). Simultaneous motion and vertical ground reaction force-time data were acquired at 1,000 Hz from eight uninstructed subjects running on a force-instrumented treadmill at 4.0 and 7.0 m/s under four footwear conditions: barefoot, minimal sole, thin sole, and thick sole. Vertical ground reaction force-time patterns were generated from the two-mass model using body mass and footfall-specific measures of contact time, aerial time, and lower-limb impact deceleration. Model force-time patterns generated using the empirical inputs acquired for each footfall matched the measured patterns closely across the four footwear conditions at both protocol speeds ( r2 = 0.96 ± 0.004; root mean squared error  = 0.17 ± 0.01 body-weight units; n = 275 total footfalls). Foot landing angles (θF) were inversely related to footwear thickness; more positive or plantar-flexed landing angles coincided with longer-impact durations and force-time patterns lacking distinct rising-edge force peaks. Our results support three conclusions: 1) running ground reaction force-time patterns across footwear conditions can be accurately predicted using our two-mass, two-impulse model, 2) impact forces, regardless of foot strike mechanics, can be accurately quantified from lower-limb motion and a fixed anatomical mass (0.08mb), and 3) runners maintain similar loading rates (ΔFvertical/Δtime) across footwear conditions by altering foot strike angle to regulate the duration of impact. NEW & NOTEWORTHY Here, we validate a two-mass, two-impulse model of running vertical ground reaction forces across four footwear thickness conditions (barefoot, minimal, thin, thick). Our model allows the impact portion of the impulse to be extracted from measured total ground reaction force-time patterns using motion data from the ankle. The gait adjustments observed across footwear conditions revealed that runners maintained similar loading rates across footwear conditions by altering foot strike angles to regulate the duration of impact.


Author(s):  
Ruta Jakušonoka ◽  
Zane Pavāre ◽  
Andris Jumtiņš ◽  
Aleksejs Smolovs ◽  
Tatjana Anaņjeva

Abstract Evaluation of the gait of patients after polytrauma is important, as it indicates the ability of patients to the previous activities and work. The aim of our study was to evaluate the gait of patients with lower limb injuries in the medium-term after polytrauma. Three-dimensional instrumental gait analysis was performed in 26 polytrauma patients (16 women and 10 men; mean age 38.6 years), 14 to 41 months after the trauma. Spatio-temporal parameters, motions in pelvis and lower extremities joints in sagittal plane and vertical load ground reaction force were analysed. Gait parameters in polytrauma patients were compared with a healthy control group. Polytrauma patients in the injured side had decreased step length, cadence, hip extension, maximum knee flexion, vertical load ground reaction force, and increased stance time and pelvic anterior tilt; in the uninjured side they had decreased step length, cadence, maximum knee flexion, vertical load ground reaction force and increased stance time (p < 0.05). The use of the three-dimensional instrumental gait analysis in the evaluation of polytrauma patients with lower limb injuries consequences makes it possible to identify the gait disorders not only in the injured, but also in the uninjured side.


1991 ◽  
Vol 71 (3) ◽  
pp. 1119-1122 ◽  
Author(s):  
R. Kram

People throughout Asia use springy bamboo poles to carry the loads of everyday life. These poles are a very compliant suspension system that allows the load to move along a nearly horizontal path while the person bounces up and down with each step. Could this be an economical way to carry loads inasmuch as no gravitational work has to be done to lift the load repeatedly? To find out, an experiment was conducted in which four male subjects ran at 3.0 m/s on a motorized treadmill with no load and while carrying a load equal to 19% body wt with compliant poles. Oxygen consumption rate, vertical ground reaction force, and the force exerted by the load on the shoulders were measured. Oxygen consumption rate increased by 22%. The same increase has previously been observed when loads are carried with a backpack. Thus compliant poles are not a particularly economical method of load carriage. However, pole suspension systems offer important advantages: they minimize peak shoulder forces and loading rates. In addition, the peak vertical ground reaction force is only slightly increased above unloaded levels when loads are carried with poles.


Sign in / Sign up

Export Citation Format

Share Document