A rare cause of fatal pulmonary alveolar proteinosis: Niemann-Pick disease type C2 and a novel mutation

Author(s):  
Ayhan Yaman ◽  
Fatma T. Eminoğlu ◽  
Tanıl Kendirli ◽  
Çağlar Ödek ◽  
Serdar Ceylaner ◽  
...  

AbstractNiemann-Pick disease type C (NPC) is a fatal autosomal recessive lipid storage disease associated with impaired trafficking of unesterified cholesterol and glycolipids in lysosomes and late endosomes. This disease is commonly characterized by hepatosplenomegaly and severe progressive neurological dysfunction. There are two defective genes that cause this illness. One of these genes is

2010 ◽  
Vol 5 (1) ◽  
pp. 83
Author(s):  
Mark Walterfang ◽  
Dennis Velakoulis ◽  
◽  

Niemann-Pick disease type C (NPC) is a rare neurovisceral lipid storage disorder resulting from autosomal recessively inherited loss-of-function mutations in eitherNpc1orNpc2. This disrupts intracellular lipid transport, leading to the accumulation of lipid products in the late endosomes and lysosomes. Affecting both children and adults, it exhibits a less rapid disease course in older patients, where it is characterised by slow cognitive decline, neuropsychiatric illness, ataxia and dystonia. As NPC is heterogeneous in presentation, it is often misdiagnosed as other movement or psychiatric disorders, highlighting the need for better awareness of this disease among clinicians. NPC is a progressive disorder and the only currently available disease-specific drug for its treatment is miglustat, which has shown positive outcomes in clinical studies. While other medications have been tested in animal models with encouraging results, they have yet to be trialled in human subjects.


Author(s):  
Frédéric Sedel

Niemann-Pick disease type C (NPC) is a fatal neurovisceral lipid storage disease of autosomal inheritance resulting from mutations in either the NPC1 (95% of families) or NPC2 gene. The encoded proteins appear to be involved in lysosomal/late endosomal transport of cholesterol, glycolipids, and other molecules, but their exact function is still unknown. The clinical spectrum of the disease ranges from a neonatal rapidly fatal disorder to an adult-onset chronic neurodegenerative disease characterized prominently by psychiatric disorders, cerebellar ataxia, cognitive decline, and vertical supranuclear gaze palsy. Miglustat is the only treatment approved to date which has been demonstrated to slow or halt disease progression.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Imad Dweikat ◽  
Othman Thaher ◽  
Abdulrahman Abosleem ◽  
Almotazbellah Zeer ◽  
Ameer Abo Mokh

Abstract Background Niemann–Pick disease type C (NPC) is an autosomal recessive, neurodegenerative disease caused by mutations in either the NPC1 or NPC2 genes. Mutations in these genes are associated with abnormal endosomal–lysosomal trafficking, resulting in the accumulation of tissue-specific lipids in lysosomes. Methods We described sixteen patients with NPC diagnosed between the age of 1 month and 30 years at two tertiary care centers in Palestine. The clinical phenotype, brain magnetic resonance imaging (MRI), and molecular genetic analysis data were reviewed. Results The diagnosis was confirmed by molecular analysis in all patients. Fourteen out of sixteen patients were homozygous for the NPC1 p.G992W variant. Among them, most were categorized as having the late-infantile neurological form of disease onset. They predominantly manifested with early-onset visceral manifestations in the form of hepatosplenomegaly and prolonged neonatal jaundice, and late-onset neuropsychiatric manifestations in the form of vertical supranuclear gaze palsy (VSGP), ataxia, cognitive impairment and seizures. Brain MRI in 6 patients was normal in 5 or consistent with cerebellar hemisphere atrophy in 1 of them. Two other mutations were identified in the NPC1 gene, of which p.V845Cfs*24 was novel. Conclusions Our results revealed phenotypic heterogeneity of NPC even within the same genotype, and add to the increasingly recognized evidence that cholestatic jaundice and hepatosplenomegaly during infancy, should alert the physician for the possibility of NPC. We reported a novel mutation in the NPC1 gene further expanding its genotype.


2006 ◽  
Vol 37 (S 1) ◽  
Author(s):  
S Tay ◽  
X He ◽  
AM Jenner ◽  
BS Wong ◽  
WY Ong

Sign in / Sign up

Export Citation Format

Share Document