lipid storage disease
Recently Published Documents


TOTAL DOCUMENTS

139
(FIVE YEARS 25)

H-INDEX

26
(FIVE YEARS 3)

Biomedicines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1864
Author(s):  
Lien Van Hoecke ◽  
Caroline Van Cauwenberghe ◽  
Verena Börger ◽  
Arnout Bruggeman ◽  
Jonas Castelein ◽  
...  

Niemann–Pick type C (NPC) disease is a rare neurovisceral lipid storage disease with progressive neurodegeneration, leading to premature death. The disease is caused by loss-of-function mutations either in the NPC1 or NPC2 gene which results in lipid accumulation in the late endosomes and lysosomes. The involved disease mechanisms are still incompletely understood, making the design of a rational treatment very difficult. Since the disease is characterized by peripheral inflammation and neuroinflammation and it is shown that extracellular vesicles (EVs) obtained from mesenchymal stromal cells (MSCs) provide immunomodulatory capacities, we tested the potential of MSC-EV preparations to alter NPC1 disease pathology. Here, we show that the administration of an MSC-EV preparation with in vitro and in vivo confirmed immune modulatory capabilities is able to reduce the inflammatory state of peripheral organs and different brain regions of NPC1-diseased mice almost to normal levels. Moreover, a reduction of foamy cells in different peripheral organs was observed upon MSC-EV treatment of NPC1−/− mice. Lastly, the treatment was able to decrease microgliosis and astrogliosis, typical features of NPC1 patients that lead to neurodegeneration. Altogether, our results reveal the therapeutic potential of MSC-EVs as treatment for the genetic neurovisceral lipid storage disease NPC, thereby counteracting both central and peripheral features.


Author(s):  
Sarah Kiener ◽  
Dominique J Wiener ◽  
Kaitlin Hopke ◽  
Alison B Diesel ◽  
Vidhya Jagannathan ◽  
...  

Abstract Ichthyoses are hereditary skin disorders characterized by the formation of scales and defects in the outermost layer of the epidermis. In dogs, at least six different breed-specific ichthyoses including a relatively common PNPLA1-related autosomal recessive ichthyosis in Golden Retrievers are known. In this study, we investigated 14 Golden Retrievers with scales that were not homozygous for the mutant PNPLA1 allele suggesting a genetically distinct new form of ichthyosis. Histopathological examinations showed lamellar, orthokeratotic hyperkeratosis and mildly hyperplastic epidermis that led to the diagnosis of a non-epidermolytic ichthyosis. Combined linkage and homozygosity mapping in 14 cases and 30 non-affected family members delimited a critical interval of ∼12.7 Mb on chromosome 23. Whole-genome sequencing of an affected dog revealed a single protein-changing variant within this region that was not present in 795 control genomes. The identified variant is a 14 bp deletion in the ABHD5 gene (c.1006_1019del), leading to a frameshift and altering the last 14 codons p.(Asp336Serfs*6). The genotypes at this variant showed perfect co-segregation with the ichthyosis phenotype in a large family comprising 14 cases and 72 controls. ABHD5 encodes an acyltransferase required for lipid metabolism. In humans, variants in ABHD5 cause Chanarin-Dorfman syndrome, a neutral lipid storage disease with ichthyosis. Our data in dogs together with the knowledge on the effects of ABHD5 variants in humans strongly suggest ABHD5:c.1006_1019del as candidate causative genetic variant for a new canine form of ichthyosis, which we propose to designate as Golden Retriever ichthyosis type 2 (ICH2).


2021 ◽  
Vol 15 ◽  
Author(s):  
Lien Van Hoecke ◽  
Caroline Van Cauwenberghe ◽  
Kristina Dominko ◽  
Griet Van Imschoot ◽  
Elien Van Wonterghem ◽  
...  

Niemann-Pick type C (NPC) disease, sometimes called childhood Alzheimer’s, is a rare neurovisceral lipid storage disease with progressive neurodegeneration leading to premature death. The disease is caused by loss-of-function mutations in the Npc1 or Npc2 gene which both result into lipid accumulation in the late endosomes and lysosomes. Since the disease presents with a broad heterogenous clinical spectrum, the involved disease mechanisms are still incompletely understood and this hampers finding an effective treatment. As NPC patients, who carry NPC1 mutations, have shown to share several pathological features with Alzheimer’s disease (AD) and we and others have previously shown that AD is associated with a dysfunctionality of the blood-cerebrospinal fluid (CSF) barrier located at choroid plexus, we investigated the functionality of this latter barrier in NPC1 pathology. Using NPC1–/– mice, we show that despite an increase in inflammatory gene expression in choroid plexus epithelial (CPE) cells, the blood-CSF barrier integrity is not dramatically affected. Interestingly, we did observe a massive increase in autophagosomes in CPE cells and enlarged extracellular vesicles (EVs) in CSF upon NPC1 pathology. Additionally, we revealed that these EVs exert toxic effects on brain tissue, in vitro as well as in vivo. Moreover, we observed that EVs derived from the supernatant of NPC1–/– choroid plexus explants are able to induce typical brain pathology characteristics of NPC1–/–, more specifically microgliosis and astrogliosis. Taken together, our data reveal for the first time that the choroid plexus and CSF EVs might play a role in the brain-related pathogenesis of NPC1.


2021 ◽  
Vol 429 ◽  
pp. 119762
Author(s):  
Barbara Risi ◽  
Stefano Cotti Piccinelli ◽  
Anna Galvagni ◽  
Nicola Necchini ◽  
Alessandro Padovani ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Yong Liu ◽  
Shengnan Cui ◽  
Jiayi Sun ◽  
Xiaoning Yan ◽  
Dongran Han

DNA methylation (DNAm) plays an important role in the pathogenesis of psoriasis through regulating mRNA expressions. This study aimed to identify hub genes regulated by DNAm as biomarkers of psoriasis. Psoriatic skin tissues gene expression and methylation datasets were downloaded from Gene Expression Omnibus (GEO) database. Subsequently, multiple computational approaches, including immune infiltration analysis, enrichment analysis, protein–protein interaction (PPI) network establishment, and machine learning algorithm analysis (lasso, random forest, and SVM-RFE), were performed to analyze the regulatory networks, to recognize hub genes, and to clarify the pathogenesis of psoriasis. Finally, the hypermethylated genes were used to immune cell infiltration analysis, which revealed that psoriasis skin tissues were mainly composed of activated dendritic cells, resting mast cells, T follicular helper cells (cTfh), etc. Differentially expressed-methylated genes (DEMGs) were identified and partitioned into four subgroups and the 97 significantly hypermethylated and downregulated (hyper-down) genes accounted for the highest proportion (47%). Hyper-down genes were mainly enriched in glucose homeostasis, AMP-activated protein kinase (AMPK) signaling pathway, lipid storage disease, partial lipodystrophy, and insulin resistance. Furthermore, insulin receptor substrate 1 (IRS1), Rho guanine nucleotide exchange factor 10 (ARHGEF10) and retinoic acid induced 14 (RAI14) were identified as potential targets. These findings provided new ideas for future studies of psoriasis on the occurrence and the molecular mechanisms.


Genes ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1164
Author(s):  
Julia Kopp ◽  
Cristina Has ◽  
Alrun Hotz ◽  
Sarah C. Grünert ◽  
Judith Fischer

Autosomal recessive Chanarin-Dorfman syndrome (CDS, MIM #275630) is defined as a neutral lipid storage disease with ichthyosis (NLSDI) due to an accumulation of lipid droplets in a variety of different tissues including liver and muscle cells, leucocytes, fibroblasts and nerve cells It is caused by biallelic mutations in the abhydrolase domain containing 5 gene (ABHD5, MIM *604780) which is localized on the short arm of chromosome 3. Here we report an 18 month-old girl in whom we have identified the homozygous ABHD5 mutation c.700C > T, p.(Arg234*). Since none of the parents carried this point mutation, parentage was confirmed by microsatellite marker analysis. Suspected uniparental disomy (UPD) was confirmed by microsatellite genotyping over the entire chromosome 3 and indicated a maternal origin. UPD is an extremely rare event that is not necessarily pathogenic, but may cause disease if the affected chromosome contains genes that are imprinted. Here we report the first case of Chanarin-Dorfman syndrome due to a de novo ABHD5 mutation in the maternal germ cell, combined with a maternal uniparental isodisomy of chromosome 3. This case demonstrates that genetic analysis of the patient and both parents is crucial to provide correct genetic counseling.


2021 ◽  
Vol 2021 ◽  
pp. 1-4
Author(s):  
Mohamed Ahmed Ghassem ◽  
Aziza Mounach ◽  
Julien H Djossou ◽  
Hamza Toufik ◽  
Najlae El Ouardi ◽  
...  

Cerebrotendinous xanthomatosis (CTX) is an autosomal recessive lipid storage disease rarely reported in Africa. Therefore, we report a Moroccan first case report of CTX. A 20-year-old woman was presented in our department for bilateral swelling of the posterior aspect of ankles and the anterior aspect knees with gait disturbances evolving since the age of 7. The patient was the first child of consanguineous marriage. She had bilateral cataracts and developmental delay. Laboratory findings revealed that the plasma cholestanol level was remarkably elevated, and plasma and urine bile alcohol levels were elevated. MRI of ankles showed a bilateral diffuse thickening of the Achilles tendon with hypointense in T1 and heterogeneous hypersignal in T2 with spots in hypersignal in T1 and T2. Brain MRI revealed bilateral and symmetrical T2 hypersignal of dentate nuclei, without white matter signal alterations or cerebral or cerebellar atrophy. A biopsy obtained of the Achilles swelling with a histological study showed an aspect of tendon xanthoma. Hence, the diagnosis of CTX was made. MRI, especially brain MRI, plays an important role in the diagnosis of CTX.


Author(s):  
Daniela Tavian ◽  
Murat Durdu ◽  
Corrado Angelini ◽  
Enza Torre ◽  
Sara Missaglia

ABHD5 protein is widely involved in lipid and energy homeostasis. Mutations in the ABHD5 gene are associated with the onset of Neutral Lipid Storage Disease with Ichthyosis (NLSDI), historically known as Chanarin Dorfman Syndrome (CDS). CDS is a rare autosomal recessive lipid storage disease, characterized by non-bullous congenital ichthyosiform eritrhoderma (NCIE), hepatomegaly and liver steatosis. Myopathy, neurosensory hearing loss, cataracts, nystagmus, strabismus, and mental impairment are considered additional findings. To date, 151 CDS patients have been reported all over the world. Here we described two additional families with patients affected by CDS from Turkey. Our patients were a 42 and 22-years old men, admitted to the Hospital for congenital ichthyosis. Hepatic steatosis and myopathy were also detected in both patients. ABHD5 molecular analysis revealed the presence of N209* mutation. Our data enlarge the cohort of CDS patients and provide a revision of muscle clinical findings for this rare inborn error of neutral lipid metabolism.


Author(s):  
HH Goebel ◽  
D Pehl ◽  
W Stenzel ◽  
U Schneider ◽  
M Schuelke

A 31-year-old female hairdresser whose parents were first degree cousins complained of episodic attacks of headache, vomiting, and dizziness for the past eight years after an uneventful childhood and adolescence. Four years ago, she developed progressive weakness, muscle pain and difficulties walking and lifting her arms that she could not work in her profession anymore. She lost hair, weight and became amenorrhoic. Finally, her muscle weakness required intensive care. Early on her CK was mildly elevated to 237 U/l (normal < 167), but later to 900 and 1800. By MRI, skeletal muscles showed minimal contrast enhancement.The clinically suspected diagnosis of myositis prompted repeated muscle biopsies, which disclosed non-specific myopathic changes, scattered necrotic muscle fibers without inflammation, protein aggregation, or vacuolation by light microscopy, but abnormally structured mitochondria with inclusions by electron microscopy, and treatment with steroids without any clinical improvement.A panel of 1131 mitochondrial genes revealed a homozygous mutation in the ETFDH gene.LEARNING OBJECTIVESThis presentation will enable the learner to: 1.Discuss MADD as a mitochondrial and lipid storage disease2.Recognize the myopathology of MADD


Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 446
Author(s):  
Timoteo Marchini ◽  
Sophie Hansen ◽  
Dennis Wolf

Atherosclerosis is a chronic inflammatory condition of the arterial wall that leads to the formation of vessel-occluding plaques within the subintimal space of middle-sized and larger arteries. While traditionally understood as a myeloid-driven lipid-storage disease, growing evidence suggests that the accumulation of low-density lipoprotein cholesterol (LDL-C) ignites an autoimmune response with CD4+ T-helper (TH) cells that recognize self-peptides from Apolipoprotein B (ApoB), the core protein of LDL-C. These autoreactive CD4+ T cells home to the atherosclerotic plaque, clonally expand, instruct other cells in the plaque, and induce clinical plaque instability. Recent developments in detecting antigen-specific cells at the single cell level have demonstrated that ApoB-reactive CD4+ T cells exist in humans and mice. Their phenotypes and functions deviate from classical immunological concepts of distinct and terminally differentiated TH immunity. Instead, ApoB-specific CD4+ T cells have a highly plastic phenotype, can acquire several, partially opposing and mixed transcriptional programs simultaneously, and transit from one TH subset into another over time. In this review, we highlight adaptive immune mechanisms in atherosclerosis with a focus on CD4+ T cells, introduce novel technologies to detect ApoB-specific CD4+ T cells at the single cell level, and discuss the potential impact of ApoB-driven autoimmunity in atherosclerosis.


Sign in / Sign up

Export Citation Format

Share Document