Niemann-Pick Disease Type C in Adulthood - A Psychiatric and Neurological Disorder

2010 ◽  
Vol 5 (1) ◽  
pp. 83
Author(s):  
Mark Walterfang ◽  
Dennis Velakoulis ◽  
◽  

Niemann-Pick disease type C (NPC) is a rare neurovisceral lipid storage disorder resulting from autosomal recessively inherited loss-of-function mutations in eitherNpc1orNpc2. This disrupts intracellular lipid transport, leading to the accumulation of lipid products in the late endosomes and lysosomes. Affecting both children and adults, it exhibits a less rapid disease course in older patients, where it is characterised by slow cognitive decline, neuropsychiatric illness, ataxia and dystonia. As NPC is heterogeneous in presentation, it is often misdiagnosed as other movement or psychiatric disorders, highlighting the need for better awareness of this disease among clinicians. NPC is a progressive disorder and the only currently available disease-specific drug for its treatment is miglustat, which has shown positive outcomes in clinical studies. While other medications have been tested in animal models with encouraging results, they have yet to be trialled in human subjects.

Author(s):  
Ayhan Yaman ◽  
Fatma T. Eminoğlu ◽  
Tanıl Kendirli ◽  
Çağlar Ödek ◽  
Serdar Ceylaner ◽  
...  

AbstractNiemann-Pick disease type C (NPC) is a fatal autosomal recessive lipid storage disease associated with impaired trafficking of unesterified cholesterol and glycolipids in lysosomes and late endosomes. This disease is commonly characterized by hepatosplenomegaly and severe progressive neurological dysfunction. There are two defective genes that cause this illness. One of these genes is


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0243746
Author(s):  
Ryuta Shioi ◽  
Fumika Karaki ◽  
Hiromasa Yoshioka ◽  
Tomomi Noguchi-Yachide ◽  
Minoru Ishikawa ◽  
...  

Niemann-Pick disease type C is a rare, fatal neurodegenerative disorder characterized by massive intracellular accumulation of cholesterol. In most cases, loss-of-function mutations in the NPC1 gene that encodes lysosomal cholesterol transporter NPC1 are responsible for the disease, and more than half of the mutations are considered to interfere with the biogenesis or folding of the protein. We previously identified a series of oxysterol derivatives and phenanthridine-6-one derivatives as pharmacological chaperones, i.e., small molecules that can rescue folding-defective phenotypes of mutated NPC1, opening up an avenue to develop chaperone therapy for Niemann-Pick disease type C. Here, we present an improved image-based screen for NPC1 chaperones and we describe its application for drug-repurposing screening. We identified some azole antifungals, including itraconazole and posaconazole, and a kinase inhibitor, lapatinib, as probable pharmacological chaperones. A photo-crosslinking study confirmed direct binding of itraconazole to a representative folding-defective mutant protein, NPC1-I1061T. Competitive photo-crosslinking experiments suggested that oxysterol-based chaperones and itraconazole share the same or adjacent binding site(s), and the sensitivity of the crosslinking to P691S mutation in the sterol-sensing domain supports the hypothesis that their binding sites are located near this domain. Although the azoles were less effective in reducing cholesterol accumulation than the oxysterol-derived chaperones or an HDAC inhibitor, LBH-589, our findings should offer new starting points for medicinal chemistry efforts to develop better pharmacological chaperones for NPC1.


2006 ◽  
Vol 37 (S 1) ◽  
Author(s):  
S Tay ◽  
X He ◽  
AM Jenner ◽  
BS Wong ◽  
WY Ong

Sign in / Sign up

Export Citation Format

Share Document