scholarly journals Wolcott-Rallison syndrome in Iran: a common cause of neonatal diabetes

2019 ◽  
Vol 32 (6) ◽  
pp. 607-613 ◽  
Author(s):  
Samaneh Noroozi Asl ◽  
Rahim Vakili ◽  
Saba Vakili ◽  
Fahimeh Soheilipour ◽  
Mahin Hashemipour ◽  
...  

Abstract Background Wolcott-Rallison syndrome is a rare autosomal recessive disorder characterized by neonatal/early-onset non-autoimmune insulin-dependent diabetes, multiple epiphyseal dysphasia and growth retardation. It is caused by mutations in the gene encoding eukaryotic translation initiation factor 2α kinase 3 (EIF2AK3). We aimed to study the clinical characteristics and frequency of the disease in the Iranian population. Methods We recruited 42 patients who referred to the endocrine and metabolism clinic at Mashhad Imam Reza Hospital with neonatal diabetes. Molecular screening of KCNJ11, INS, ABCC8 and EIF2AK3 was performed at the Exeter Molecular Genetics Laboratory, UK. We calculated the frequency of the disease in 124 patients referred from Iran to the Exeter Molecular Genetics Laboratory for genetic screening and compared it to other countries worldwide. Results We identified seven patients as having Wolcott-Rallison syndrome. Genetic testing confirmed the clinical diagnosis and indicated five novel mutations. Only two patients developed clinical features of the syndrome by 6 months of age. Of all 124 cases of Iranian neonatal diabetes referred to the Exeter Molecular Genetics Laboratory for genetic screening, 28 patients (22.58%) had a recessive mutation in EIF2AK3. Conclusions The results of this study raises awareness of the condition and provides further accurate data on the genetic and clinical presentation of Wolcott-Rallison syndrome in the Iranian population. Our study highlights the importance of genetic testing in patients from consanguineous families with diabetes diagnosed within the first 6 months of life.

Author(s):  
Najlae El Hafidi ◽  
Zineb Imane

Introduction: Wolcott-Rallison syndrome is a rare autosomal recessive disorder characterized by neonatal diabetes in consanguineous families. associated with liver dysfunction, epiphyseal dysplasia, and. growth retardation. It is caused by mutations in the gene encoding eukaryotic translation initiation factor 2α kinase 3 (EIF2AK3). We report a long-term evolution of 4 patients with Wolcott Rallison syndrome.


1996 ◽  
Vol 34 (6) ◽  
pp. 393-400 ◽  
Author(s):  
F. Mirbod ◽  
S. Nakashima ◽  
Y. Kitajima ◽  
M.A. Ghannoum ◽  
R.D. Cannon ◽  
...  

eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Andon N Placzek ◽  
David L Molfese ◽  
Sanjeev Khatiwada ◽  
Gonzalo Viana Di Prisco ◽  
Wei Huang ◽  
...  

Adolescents are particularly vulnerable to nicotine, the principal addictive component driving tobacco smoking. In a companion study, we found that reduced activity of the translation initiation factor eIF2α underlies the hypersensitivity of adolescent mice to the effects of cocaine. Here we report that nicotine potentiates excitatory synaptic transmission in ventral tegmental area dopaminergic neurons more readily in adolescent mice compared to adults. Adult mice with genetic or pharmacological reduction in p-eIF2α-mediated translation are more susceptible to nicotine’s synaptic effects, like adolescents. When we investigated the influence of allelic variability of the Eif2s1 gene (encoding eIF2α) on reward-related neuronal responses in human smokers, we found that a single nucleotide polymorphism in the Eif2s1 gene modulates mesolimbic neuronal reward responses in human smokers. These findings suggest that p-eIF2α regulates synaptic actions of nicotine in both mice and humans, and that reduced p-eIF2α may enhance susceptibility to nicotine (and other drugs of abuse) during adolescence.


Author(s):  
Wenqing Liu ◽  
Na Li ◽  
Mengfei Zhang ◽  
Ahmed H. Arisha ◽  
Jinlian Hua

: Eukaryotic translation initiation factor 2 subunit 3 and structural gene Y-linked (Eif2s3y) gene, the gene encoding eIF2γ protein, is located on the mouse Y chromosome short arm. The Eif2s3y gene is globally expressed in all tissues and plays an important role in regulating global and gene-specific mRNA translation initiation. During the process of protein translation initiation, Eif2s3x(its homolog) and Eif2s3y encoded eIF2γ perform similar functions. However, it has been noticed that Eif2s3y plays a crucial role in spermatogenesis, including spermatogonia mitosis, meiosis, and spermiogenesis of spermatids, which may account for infertility. In the period of spermatogenesis, the role of Eif2s3x and Eif2s3y are not equivalent. Importance of Eif2s3y has been observed in ESC and implicated in several aspects, including the pluripotency state and the proliferation rate. Here, we discuss the functional significance of Eif2s3y in mouse spermatogenesis and self-renewal of ESCs.


2003 ◽  
Vol 163 (4) ◽  
pp. 767-775 ◽  
Author(s):  
Céline Jousse ◽  
Seiichi Oyadomari ◽  
Isabel Novoa ◽  
Phoebe Lu ◽  
Yuhong Zhang ◽  
...  

Phosphorylation of eukaryotic translation initiation factor 2α (eIF2α) on serine 51 is effected by specific stress-activated protein kinases. eIF2α phosphorylation inhibits translation initiation promoting a cytoprotective gene expression program known as the integrated stress response (ISR). Stress-induced activation of GADD34 feeds back negatively on this pathway by promoting eIF2α dephosphorylation, however, GADD34 mutant cells retain significant eIF2α-directed phosphatase activity. We used a somatic cell genetic approach to identify a gene encoding a novel regulatory subunit of a constitutively active holophosphatase complex that dephosphorylates eIF2α. RNAi of this gene, which we named constitutive repressor of eIF2α phosphorylation (CReP, or PPP1R15B), repressed the constitutive eIF2α-directed phosphatase activity and activated the ISR. CReP RNAi strongly protected mammalian cells against oxidative stress, peroxynitrite stress, and more modestly against accumulation of malfolded proteins in the endoplasmic reticulum. These findings suggest that therapeutic inhibition of eIF2α dephosphorylation by targeting the CReP-protein–phosphatase-1 complex may be used to access the salubrious qualities of the ISR.


Sign in / Sign up

Export Citation Format

Share Document