Clinical, pathological and molecular spectrum of patients with glycogen storage diseases in Pakistan

Author(s):  
Sibtain Ahmed ◽  
Fizza Akbar ◽  
Amyna Jaffar Ali ◽  
Bushra Afroze

Abstract Objectives Evaluation of clinical, biochemical and molecular analysis of Pakistani patients with hepatic GSDs. Methods Medical charts, biochemical, histopathological and molecular results of patients with hepatic GSD were reviewed. Results Out of 55 GSD patients, 41 (74.5%) were males and 14 (25.5%) were females with consanguinity in 50 (91%) patients. The median age of initial symptoms, clinic diagnosis and molecular diagnosis were 450 (IQR: 270–960), 1,095 (IQR: 510–1,825) and 1717 (IQR: 796–3,011) days, respectively. Molecular analysis and enzyme activity was available for 33 (60%) and two patients, respectively. GSD III (n=9) was most prevalent followed by GSD Ib (n=7), GSD IXc (n=6), GSD VI (n=4), GSD Ia (n=3), GSD XI (n=3), GSD IXb (n=2) and GSD IXa (n=1). In patients (n=33) who underwent molecular analysis; 19 different variants in eight genes associated with GSD were identified. We also report five novel variants, two in SLC37A4, one in AGL and two in PYGL contributing to the diagnosis of GSD Ib, GSD III and GSD VI, respectively. Conclusions Fifty-five patients of GSDs in 26 families from a single care provider indicate a relatively high frequency of GSD in Pakistan, with multiple unrelated families harboring identical disease-causing variants, on molecular analysis, including two known pathogenic variants in SLC37A4 and PHKG2, and a novel variant in AGL.

2021 ◽  
Vol 10 (9) ◽  
pp. 1954
Author(s):  
Riccardo Vio ◽  
Annalisa Angelini ◽  
Cristina Basso ◽  
Alberto Cipriani ◽  
Alessandro Zorzi ◽  
...  

Hypertrophic cardiomyopathy (HCM) and primary restrictive cardiomyopathy (RCM) have a similar genetic background as they are both caused mainly by variants in sarcomeric genes. These “sarcomeric cardiomyopathies” also share diastolic dysfunction as the prevalent pathophysiological mechanism. Starting from the observation that patients with HCM and primary RCM may coexist in the same family, a characteristic pathophysiological profile of HCM with restrictive physiology has been recently described and supports the hypothesis that familiar forms of primary RCM may represent a part of the phenotypic spectrum of HCM rather than a different genetic cardiomyopathy. To further complicate this scenario some infiltrative (amyloidosis) and storage diseases (Fabry disease and glycogen storage diseases) may show either a hypertrophic or restrictive phenotype according to left ventricular wall thickness and filling pattern. Establishing a correct etiological diagnosis among HCM, primary RCM, and hypertrophic or restrictive phenocopies is of paramount importance for cascade family screening and therapy.


2007 ◽  
Vol 30 (3) ◽  
pp. 350-357 ◽  
Author(s):  
K. Bhattacharya ◽  
R. C. Orton ◽  
X. Qi ◽  
H. Mundy ◽  
D. W. Morley ◽  
...  

Genes ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 282
Author(s):  
Brais Bea-Mascato ◽  
Carlos Solarat ◽  
Irene Perea-Romero ◽  
Teresa Jaijo ◽  
Fiona Blanco-Kelly ◽  
...  

Alström syndrome (ALMS) is an ultrarare disease with an estimated prevalence lower than 1 in 1,000,000. It is associated with disease-causing mutations in the Alström syndrome 1 (ALMS1) gene, which codifies for a structural protein of the basal body and centrosomes. The symptomatology involves nystagmus, type 2 diabetes mellitus (T2D), obesity, dilated cardiomyopathy (DCM), neurodegenerative disorders and multiorgan fibrosis. We refined the clinical and genetic diagnosis data of 12 patients from 11 families, all of them from Spain. We also studied the allelic frequency of the different variants present in this cohort and performed a haplotype analysis for the most prevalent allele. The genetic analysis revealed 2 novel homozygous variants located in the exon 8, p.(Glu929Ter) and p.(His1808GlufsTer20) in 2 unrelated patients. These 2 novel variants were classified as pathogenic after an in silico experiment (computer analysis). On the other hand, 2 alleles were detected at a high frequency in our cohort: p.(Tyr1714Ter) (25%) and p.(Ser3872TyrfsTer19) (16.7%). The segregation analysis showed that the pathogenic variant p.(Tyr1714Ter) in 3 families is linked to a rare missense polymorphism, p.(Asn1787Asp). In conclusion, 2 novel pathological mutations have been discovered in homozygosis, as well as a probable founder effect in 3 unrelated families.


PEDIATRICS ◽  
1960 ◽  
Vol 26 (6) ◽  
pp. 914-914
Author(s):  
Benjamin H. Landing

This book begins with a general survey of the biochemistry and metabolism of fatty acids, glycerolipids, phospholipids, sphingolipids and cholesterol. A number of diseases involving "synthesis, transport or deposit" of these lipids are then reviewed, not including disorders of metabolism of steroids other than cholesterol, nor the carotenoids. The descriptions of clinical and pathologic aspects of the various diseases of lipid metabolism vary from good to excellent, and the author demonstrates both judgement and willingness to take a stand in some of the more controversial fields, such as the glycogen storage diseases.


2012 ◽  
pp. 115-139 ◽  
Author(s):  
Pascal Laforêt ◽  
David A. Weinstein ◽  
G. Peter A. Smit

Sign in / Sign up

Export Citation Format

Share Document