Sexual size dimorphism and geographic variation in forearm length of Rafinesque’s Big-eared Bat (Corynorhinus rafinesquii) and Southeastern Myotis (Myotis austroriparius)

Mammalia ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Jessica M. Vannatta ◽  
Brian D. Carver

Abstract Sexual size dimorphism is common in many taxa and results from various pressures, including competition, reproductive requirements, functional differences, and sexual recognition. For mammals, males are typically the larger sex; however, for vespertilionid bats, females are more often the larger sex. Forearm length, a feature that influences overall wing and body size and is often sexually dimorphic, is a standard morphological measurement taken from bats. Forearm length was measured in two vesper bat species (Corynorhinus rafinesquii and Myotis austroriparius) that co-occur across much of the southeastern United States. Forearm length was greater in females of both species, and females of both species also exhibited regional variation in forearm length. By having a longer forearm and therefore being larger in size, females may be more maneuverable and better equipped to carry young. While this study did not directly investigate the mechanisms behind regional variation in forearm length, it is possible this is the result of variability in habitat types, resources, or thermodynamic constraints. Knowledge of sexually dimorphic characteristics is important for obtaining a general understanding of a species and its morphology.

2018 ◽  
Vol 96 (11) ◽  
pp. 1196-1202 ◽  
Author(s):  
Brett A. DeGregorio ◽  
Gabriel Blouin-Demers ◽  
Gerardo L.F. Carfagno ◽  
J. Whitfield Gibbons ◽  
Stephen J. Mullin ◽  
...  

Because body size affects nearly all facets of an organism’s life history, ecologists have long been interested in large-scale patterns of body-size variation, as well as why those large-scale patterns often differ between sexes. We explored body-size variation across the range of the sexually dimorphic Ratsnake complex (species of the genus Pantherophis Fitzinger, 1843 s.l.; formerly Elaphe obsoleta (Say in James, 1823)) in North America. We specifically explored whether variation in body size followed latitudinal patterns or varied with climatic variables. We found that body size did not conform to a climatic or latitudinal gradient, but instead, some of the populations with the largest snakes occurred near the core of the geographic range and some with the smallest occurred near the northern, western, and southern peripheries of the range. Males averaged 14% larger than females, although the degree of sexual size dimorphism varied between populations (range: 2%–25%). There was a weak trend for male body size to change in relation to temperature, whereas female body size did not. Our results indicate that relationships between climate and an ectotherm’s body size are more complicated than linear latitudinal clines and likely differ for males and females.


2016 ◽  
Vol 37 (3) ◽  
pp. 291-299 ◽  
Author(s):  
Markus Maerker ◽  
Sandy Reinhard ◽  
Peter Pogoda ◽  
Alexander Kupfer

Sexual size dimorphism (SSD) describing intersexual size differences of a given taxon is a widespread phenomenon in the animal kingdom. SSD plays a significant role in understanding life history and mating system evolution. The snakelike morphology of limbless caecilian amphibians lacking obvious secondary sexual characters (in contrast to frogs and salamanders) impedes an accurate comparison between sexes.Here, the phylogenetically derived teresomatan and viviparous caecilianGeotrypetes seraphini seraphiniwas analysed for patterns of sexual dimorphism. In terms of body size females were the larger sex, but when body length was adjusted male-biased intersexual differences in cloacal shape appeared. The larger female size is likely explained by fecundity selection as clutch size was positively correlated to female body length. Unexpectedly a cryptic, ontogeny related variation of the nuchal collars was found. An overview of SSD in caecilians including data for 27 species of nine out of ten existing families revealed a quite high number of taxa showing sexually dimorphic head size dimensions exclusively present among phylogenetically derived teresomatan caecilians. Still further research including insights into the behavioural ecology and molecular ecology of mating systems is warranted to better understand the evolution of sexual size dimorphism of caecilian amphibians.


2019 ◽  
Vol 97 (3) ◽  
pp. 241-250
Author(s):  
E. Salogni ◽  
F. Galimberti ◽  
S. Sanvito ◽  
E.H. Miller

In mammals, males generally are larger than females, though such sexual-size differences have been documented primarily in adults and are relatively poorly known in early life. We studied sexual-size differences in pups of the northern elephant seal (Mirounga angustirostris (Gill, 1866)), which in adulthood is one of the most sexually dimorphic mammals. We studied body size at birth and weaning, at Islas San Benito, Mexico, at the southernmost limit of the species’ breeding range. Males were 10% heavier and 2% longer than females at birth. Sexes did not differ significantly in either measure of body size at weaning, although males were slightly heavier (4%) and longer (1%) than females. Neither growth rate nor suckling duration differed between the sexes. In previous studies in California, USA, pups at weaning were heavier than in our study, and males were heavier than females. These differences may reflect ecological, temporal, or life-history differences across populations. The modest difference in sexual-size dimorphism early in life in this species compared with the great difference in adulthood likely reflects multiple selective forces, including constraints on neonatal size set by body size of females, and the weakness of sexual selection at that stage of life.


2007 ◽  
Vol 85 (6) ◽  
pp. 686-694 ◽  
Author(s):  
H.M. Townsend ◽  
T.J. Maness ◽  
D.J. Anderson

A review of studies on nestling bird food requirements indicates that degree of sexual size dimorphism reliably predicts disparity in sex-specific food requirements, but that parents often fail to meet the excess requirement of the larger sex. We studied a population of Nazca boobies ( Sula granti Rothschild, 1902), a sexually dimorphic pelagic seabird, to determine whether parents provide more care to daughters, the larger sex. Daughters grew to a larger size than did sons during the nestling period, but did not reach the mean size of adult females, while sons exceeded the size of adult males. Estimates of parental effort exerted for sons versus daughters indicated similar levels of effort, and that females fledged in poorer condition than males did in the study year, one of intermediate breeding conditions. Results from another study conducted during better breeding conditions indicated little limitation on growth of either sex. Together, these studies are consistent with a ceiling on parental effort in a long-lived species that allows consistent self-maintenance for parents, but causes poor performance in the costlier sex under poor breeding conditions. Complementary studies of short-lived species are needed to evaluate our suggested linkage between parental effort, self-maintenance, and sexual size dimorphism.


2017 ◽  
Vol 4 (6) ◽  
pp. 170453 ◽  
Author(s):  
P. J. Johnson ◽  
M. J. Noonan ◽  
A. C. Kitchener ◽  
L. A. Harrington ◽  
C. Newman ◽  
...  

The tendency for sexual size dimorphism (SSD) to increase with body mass in taxa where males are larger, and to decrease when females are larger, is known as Rensch's rule. In mammals, where the trend occurs, it is believed to be the result of a competitive advantage for larger males, while female mass is constrained by the energetics of reproduction. Here, we examine the allometry of SSD within the Felidae and Canidae, demonstrating distinctly different patterns: in felids, there is positive allometric scaling, while there is no trend in canids. We hypothesize that feeding ecology, via its effect on female spacing patterns, is responsible for the difference; larger male mass may be advantageous only where females are dispersed such that males can defend access to them. This is supported by the observation that felids are predominately solitary, and all are obligate carnivores. Similarly, carnivorous canids are more sexually dimorphic than insectivores and omnivores, but carnivory does not contribute to a Rensch effect as dietary variation occurs across the mass spectrum. The observed inter-familial differences are also consistent with reduced constraints on female mass in the canids, where litter size increases with body mass, versus no observable allometry in the felids.


Zootaxa ◽  
2011 ◽  
Vol 3096 (1) ◽  
pp. 64
Author(s):  
ANDRÉ A. NOGUEIRA ◽  
ANTONIO D. BRESCOVIT

Most species of spiders exhibit some degree sexual size dimorphism (SSD). Females are usually larger than males, about 20% on average (Vollrath 1998), although this difference can be much larger. By convention, species in which the adult males are half or less of the adult female size are considered sexually dimorphic, some representing cases of extreme SSD (Hormiga et al. 2000). It is worth mentioning that although males are called dwarfs, large SSD is often a consequence of female gigantism rather than male dwarfism (Hormiga et al. 2000).


2008 ◽  
Vol 68 (4) ◽  
pp. 897-904 ◽  
Author(s):  
R. Bornholdt ◽  
LR. Oliveira ◽  
ME. Fabián

Among Vespertilionidae species, sexual size dimorphism is very well documented, in which females are larger than males. The differences are mainly in body weight, skull measurements and forearm length. Studies have discussed some hypothesis for this phenomenon. However, very little information is known about sexual size dimorphism in Myotis nigricans (Schinz, 1821) in Brazil. In this sense, the goal of this paper is to present a study of this phenomenon in the species. For this, we present a quantitative analysis of sexual size dimorphism assessed by traditional morphometrics. Ten skull measurements in addition to the forearm length of adult specimens were taken. Results of traditional morphometrics revealed sexual size dimorphism in five skull measurements and in the forearm length. Females were larger than males. These differences can be attributed to natural selection on large female size for increase fecundity. Bat females of the Vespertilionidae family are usually larger than males in order to perform parental care appropriately and to provide a successful reproductive process.


Sign in / Sign up

Export Citation Format

Share Document