mating system evolution
Recently Published Documents


TOTAL DOCUMENTS

58
(FIVE YEARS 11)

H-INDEX

19
(FIVE YEARS 2)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ryosuke Imai ◽  
Yoshiaki Tsuda ◽  
Atsushi Ebihara ◽  
Sadamu Matsumoto ◽  
Ayumi Tezuka ◽  
...  

Author(s):  
Ingrid Ahnesjö ◽  
Luc Bussière

Animal mating systems are fascinating and diverse, and their evolution is central to evolutionary biology. A mating system describes patterns and processes of how females and males mate and reproduce successfully, and how this relates to their reproductive ecologies, including demographic and environmental factors. One of the more stimulating challenges in biology is to provide a comprehensive explanation for the evolution of mating adaptations among animals. In the course of sexual reproduction, animals engage in a dizzying array of traits, behaviors, and strategies. Such diversity simultaneously requires and eludes categorization: it is required for a general understanding, but at once confounds any rigorous classification because an almost inexhaustible supply of animal examples disrupt otherwise neatly ordered systems (see Classifications of Animal Mating Systems). Historically, mating with a single partner was thought to be a common mating system among animals. However, increasing observations of multiple mating by both sexes, supported by genomic evidence of mixed parentage within families, has since revealed that strict genetic monogamy is rare. In this bibliography, the selected literature highlights a compelling diversity and flexibility among animal mating systems, and sexual selection emerges both as a contributing cause and consequence of this variation. Sexual selection plays a central role in animal mating system evolution, and key references provide insights into its operation before and after mating, and describe how it leads to the expression of secondary sexual traits and sexual conflicts. Efforts to explain diversity in animal mating systems have often focused on how acquiring mates or matings relates to variance in reproductive success. This variation and diversity can be approached at the level of an individual, among individuals in a population, or between species. However, a preoccupation with the mean or average pattern often leads to generalizations that obscure important diversity crucial to evolutionary understanding. To avoid unnecessary categorization, the presentation here focus`es on variation in mating patterns and contrasts multiple mating with mating with a single partner. Furthermore, it considers the wider effects of animal mating systems, and includes associations with patterns of parental care. The aim with this bibliography is to provide key citations demonstrating that animal mating systems evolve from diverse, interactive, complex and dynamic processes resulting in a variety of adaptive mating strategies in females and males. A grateful acknowledgment is given to C. Kvarnemo and D. Gwynne for insightful comments.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10698
Author(s):  
Vania Jiménez-Lobato ◽  
Juan Núñez-Farfán

Plant mating system determines, to a great extent, the demographic and genetic properties of populations, hence their potential for adaptive evolution. Variation in plant mating system has been documented between phylogenetically related species as well between populations of a species. A common evolutionary transition, from outcrossing to selfing, is likely to occur under environmental spatial variation in the service of pollinators. Here, we studied two phenotypically (in floral traits) and genetically (in neutral molecular markers) differentiated populations of the annual, insect-pollinated, plant Datura inoxia in Mexico, that differ in the service of pollinators (Mapimí and Cañada Moreno). First, we determined the populations’ parameters of phenotypic in herkogamy, outcrossing and selfing rates with microsatellite loci, and assessed between generation (adults and seedlings) inbreeding, and inbreeding depression. Second, we compared the relationships between parameters in each population. Results point strong differences between populations: plants in Mapimí have, on average, approach herkogamy, higher outcrossing rate (tm = 0.68), lower primary selfing rate (r = 0.35), and lower inbreeding at equilibrium (Fe = 0.24) and higher inbreeding depression (δ = 0.25), than the populations of Cañada. Outcrossing seems to be favored in Mapimí while selfing in Cañada. The relationship between r and Fe were negatively associated with herkogamy in Mapimí; here, progenies derived from plants with no herkogamy or reverse herkogamy had higher selfing rate and inbreeding coefficient than plants with approach herkogamy. The difference Fe–F is positively related to primary selfing rate (r) only in Cañada Moreno which suggests inbreeding depression in selfing individuals and then genetic purging. In conclusion, mating system evolution may occur differentially among maternal lineages within populations of Datura inoxia, in which approach herkogamy favors higher outcrossing rates and low levels of inbreeding and inbreeding depression, while no herkogamy or reverse herkogamy lead to the evolution of the “selfing syndrome” following the purge of deleterious alleles despite high inbreeding among individuals.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ryosuke Imai ◽  
Yoshiaki Tsuda ◽  
Atsushi Ebihara ◽  
Sadamu Matsumoto ◽  
Ayumi Tezuka ◽  
...  

AbstractEvolution of mating systems has become one of the most important research areas in evolutionary biology. Cyrtomium falcatum is a homosporous fern species native to eastern Asia. Two subspecies belonging to a sexual diploid race of C. falcatum are recognized: subsp. littorale and subsp. australe. Subspecies littorale shows intermediate selfing rates, while subsp. australe is an obligate outcrosser. We aimed to evaluate the process of mating system evolution and divergence for the two subspecies using restriction site associated DNA sequencing (RAD-seq). The results showed that subsp. littorale had lower genetic diversity and stronger genetic drift than subsp. australe. Fluctuations in the effective population size over time were evaluated by extended Bayesian skyline plot and Stairway plot analyses, both of which revealed a severe population bottleneck about 20,000 years ago in subsp. littorale. This bottleneck and the subsequent range expansion after the LGM appear to have played an important role in the divergence of the two subspecies and the evolution of selfing in subsp. littorale. These results shed new light on the relationship between mating system evolution and past demographic change in fern species.


2020 ◽  
Vol 195 (2) ◽  
pp. 247-274
Author(s):  
Barry Sinervo ◽  
Alexis S. Chaine ◽  
Donald B. Miles

2019 ◽  
Vol 33 (3) ◽  
pp. 297-308 ◽  
Author(s):  
Julian Baur ◽  
Jeannine Roy ◽  
Martin A. Schäfer ◽  
Nalini Puniamoorthy ◽  
Wolf U. Blanckenhorn ◽  
...  

2019 ◽  
Author(s):  
Diala Abu Awad ◽  
Denis Roze

ABSTRACTInbreeding depression resulting from partially recessive deleterious alleles is thought to be the main genetic factor preventing self-fertilizing mutants from spreading in outcrossing hermaphroditic populations. However, deleterious alleles may also generate an advantage to selfers in terms of more efficient purging, while the effects of epistasis among those alleles on inbreeding depression and mating system evolution remain little explored. In this paper, we use a general model of selection to disentangle the effects of different forms of epistasis (additive-by-additive, additive-by-dominance and dominance-by-dominance) on inbreeding depression and on the strength of selection for selfing. Models with fixed epistasis across loci, and models of stabilizing selection acting on quantitative traits (generating distributions of epistasis) are considered as special cases. Besides its effects on inbreeding depression, epistasis may increase the purging advantage associated with selfing (when it is negative on average), while the variance in epistasis favors selfing through the generation of linkage disequilibria that increase mean fitness. Approximations for the strengths of these effects are derived, and compared with individual-based simulation results.


2019 ◽  
Vol 29 (15) ◽  
pp. R743-R746 ◽  
Author(s):  
Sheng Sun ◽  
Xiaorong Lin ◽  
Marco A. Coelho ◽  
Joseph Heitman

Sign in / Sign up

Export Citation Format

Share Document