scholarly journals Numerical methods for the multiplicative partial differential equations

2017 ◽  
Vol 15 (1) ◽  
pp. 1344-1350
Author(s):  
Muhammet Yazıcı ◽  
Harun Selvitopi

Abstract We propose the multiplicative explicit Euler, multiplicative implicit Euler, and multiplicative Crank-Nicolson algorithms for the numerical solutions of the multiplicative partial differential equation. We also consider the truncation error estimation for the numerical methods. The stability of the algorithms is analyzed by using the matrix form. The result reveals that the proposed numerical methods are effective and convenient.

2020 ◽  
Vol 13 (13) ◽  
pp. 55-61
Author(s):  
Kedar Nath Uprety ◽  
Ganesh Prasad Panday

Numerical methods form an important part of the pricing of financial derivatives where there is no closed form analytical formula. Black-Scholes equation is a well known partial differential equation in financial mathematics. In this paper, we have studied the numerical solutions of the Black-Scholes equation for European options (Call and Put) as well as American options with dividends. We have used different approximate to discretize the partial differential equation in space and explicit (Forward Euler’s), fully implicit with projected Successive Over-Relaxation (SOR) algorithm and Crank-Nicolson scheme for time stepping. We have implemented and tested the methods in MATLAB. Finally, some numerical results have been presented and the effects of dividend payments on option pricing have also been considered.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Dawei Cheng ◽  
Wenke Wang ◽  
Xi Chen ◽  
Zaiyong Zhang

For one-dimensional (1D) nonlinear consolidation, the governing partial differential equation is nonlinear. This paper develops the finite analytic method (FAM) to simulate 1D nonlinear consolidation under different time-dependent loading and initial conditions. To achieve this, the assumption of constant initial effective stress is not considered and the governing partial differential equation is transformed into the diffusion equation. Then, the finite analytic implicit scheme is established. The convergence and stability of finite analytic numerical scheme are proven by a rigorous mathematical analysis. In addition, the paper obtains three corrected semianalytical solutions undergoing suddenly imposed constant loading, single ramp loading, and trapezoidal cyclic loading, respectively. Comparisons of the results of FAM with the three semianalytical solutions and the result of FDM, respectively, show that the FAM can obtain stable and accurate numerical solutions and ensure the convergence of spatial discretization for 1D nonlinear consolidation.


1982 ◽  
Vol 104 (2) ◽  
pp. 149-156 ◽  
Author(s):  
Chi U. Ikoku ◽  
H. J. Ramey

This paper presents solutions of the nonlinear partial differential equation using the Douglas-Jones predictor-corrector method for the numerical solution of nonlinear partial differential equations. The results are presented in tabular form and as semilogarithmic and log-log type-curve graphs. Graphs of dimensionless pressure versus dimensionless radius also are presented. Compared to results from analytical solutions of the linear partial differential equation, the graphs have the same shape. The error introduced by the linearizing approximation is small for many values of the flow behavior index, n, and decreases as n tends to unity. Dimensionless pressure is a linear function of dimensionless radius to the power (1–n), near the well, as predicted by the steady-state equations. Also radius of investigation equation derived analytically agrees with results from numerical solutions.


2018 ◽  
Vol 22 (Suppl. 1) ◽  
pp. 33-46 ◽  
Author(s):  
Durgun Dogan ◽  
Ali Konuralp

In this paper, time-fractional non-linear partial differential equation with proportional delays are solved by fractional variational iteration method taking into account modified Riemann-Liouville fractional derivative. The numerical solutions which are calculated by using this method are better than those obtained by homotopy perturbation method and differential transform method with same data set and approximation order. On the other hand, to improve the solutions obtained by fractional variational iteration method, residual error function is used. With this additional process, the resulting approximate solutions are getting closer to the exact solutions. The results obtained by taking into account different values of variables in the domain are supported by compared tables and graphics in detail.


2020 ◽  
pp. 2324-2334
Author(s):  
Usman M. A ◽  
Makinde T. A. ◽  
Daniel D. O.

This paper investigates the modal analysis of vibration of Euler-Bernoulli beam subjected to concentrated load. The governing partial differential equation was analysed to determine the behaviour of the system under consideration. The series solution and numerical methods were used to solve the governing partial differential equation. The results revealed that the amplitude increases as the length of the beam increases. It was also found that the response amplitude increases as the foundation increases at fixed length of the beam.


Sign in / Sign up

Export Citation Format

Share Document