Parallel MCMC methods for global optimization

2019 ◽  
Vol 25 (3) ◽  
pp. 227-237
Author(s):  
Lihao Zhang ◽  
Zeyang Ye ◽  
Yuefan Deng

Abstract We introduce a parallel scheme for simulated annealing, a widely used Markov chain Monte Carlo (MCMC) method for optimization. Our method is constructed and analyzed under the classical framework of MCMC. The benchmark function for optimization is used for validation and verification of the parallel scheme. The experimental results, along with the proof based on statistical theory, provide us with insights into the mechanics of the parallelization of simulated annealing for high parallel efficiency or scalability for large parallel computers.

2013 ◽  
Vol 9 (S298) ◽  
pp. 441-441
Author(s):  
Yihan Song ◽  
Ali Luo ◽  
Yongheng Zhao

AbstractStellar radial velocity is estimated by using template fitting and Markov Chain Monte Carlo(MCMC) methods. This method works on the LAMOST stellar spectra. The MCMC simulation generates a probability distribution of the RV. The RV error can also computed from distribution.


2000 ◽  
Vol 32 (2) ◽  
pp. 480-498 ◽  
Author(s):  
G. Yin

This work develops a class of stochastic global optimization algorithms that are Kiefer-Wolfowitz (KW) type procedures with an added perturbing noise and partial step size restarting. The motivation stems from the use of KW-type procedures and Monte Carlo versions of simulated annealing algorithms in a wide range of applications. Using weak convergence approaches, our effort is directed to proving the convergence of the underlying algorithms under general noise processes.


2020 ◽  
Vol 19 (1) ◽  
pp. 142-160
Author(s):  
Arun Kumar Chaudhary ◽  
Vijay Kumar

 In this paper, the Markov chain Monte Carlo (MCMC) method is used to estimate the parameters of the Gompertz extension distribution based on a complete sample. We have developed a procedure to obtain Bayes estimates of the parameters of the Gompertz extension distribution using Markov Chain Monte Carlo (MCMC) simulation method in OpenBUGS, established software for Bayesian analysis using Markov Chain Monte Carlo (MCMC) methods. We have obtained the Bayes estimates of the parameters, hazard and reliability functions, and their probability intervals are also presented. We have applied the predictive check method to discuss the issue of model compatibility. A real data set is considered for illustration under uniform and gamma priors.  


2000 ◽  
Vol 32 (02) ◽  
pp. 480-498
Author(s):  
G. Yin

This work develops a class of stochastic global optimization algorithms that are Kiefer-Wolfowitz (KW) type procedures with an added perturbing noise and partial step size restarting. The motivation stems from the use of KW-type procedures and Monte Carlo versions of simulated annealing algorithms in a wide range of applications. Using weak convergence approaches, our effort is directed to proving the convergence of the underlying algorithms under general noise processes.


Genetics ◽  
1997 ◽  
Vol 146 (2) ◽  
pp. 735-743 ◽  
Author(s):  
Pekka Uimari ◽  
Ina Hoeschele

A Bayesian method for mapping linked quantitative trait loci (QTL) using multiple linked genetic markers is presented. Parameter estimation and hypothesis testing was implemented via Markov chain Monte Carlo (MCMC) algorithms. Parameters included were allele frequencies and substitution effects for two biallelic QTL, map positions of the QTL and markers, allele frequencies of the markers, and polygenic and residual variances. Missing data were polygenic effects and multi-locus marker-QTL genotypes. Three different MCMC schemes for testing the presence of a single or two linked QTL on the chromosome were compared. The first approach includes a model indicator variable representing two unlinked QTL affecting the trait, one linked and one unlinked QTL, or both QTL linked with the markers. The second approach incorporates an indicator variable for each QTL into the model for phenotype, allowing or not allowing for a substitution effect of a QTL on phenotype, and the third approach is based on model determination by reversible jump MCMC. Methods were evaluated empirically by analyzing simulated granddaughter designs. All methods identified correctly a second, linked QTL and did not reject the one-QTL model when there was only a single QTL and no additional or an unlinked QTL.


Sign in / Sign up

Export Citation Format

Share Document