High order weak approximation for irregular functionals of time-inhomogeneous SDEs

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Toshihiro Yamada

Abstract This paper shows a general weak approximation method for time-inhomogeneous stochastic differential equations (SDEs) using Malliavin weights. A unified approach is introduced to construct a higher order discretization scheme for expectations of non-smooth functionals of solutions of time-inhomogeneous SDEs. Numerical experiments show the validity of the method.

Author(s):  
Adrien Laurent ◽  
Gilles Vilmart

AbstractWe derive a new methodology for the construction of high-order integrators for sampling the invariant measure of ergodic stochastic differential equations with dynamics constrained on a manifold. We obtain the order conditions for sampling the invariant measure for a class of Runge–Kutta methods applied to the constrained overdamped Langevin equation. The analysis is valid for arbitrarily high order and relies on an extension of the exotic aromatic Butcher-series formalism. To illustrate the methodology, a method of order two is introduced, and numerical experiments on the sphere, the torus and the special linear group confirm the theoretical findings.


2019 ◽  
Vol 16 (8) ◽  
pp. 3137-3140
Author(s):  
Yazid Alhojilan

Due to that the explicit methods in solving stochastic differential equations give instability and inaccurate results, the aim of this paper is to derive an effective implicit method gives higher-order approximate solutions for a stiff stochastic differential equations by using Runge-Kutta method. It relies on the Stratonovich-Taylor expansion and uses the notion of perturbation and coupling to carry out the method. The validity of this new approximation method is shown by implementing in MATLAB and, showing the convergence of the method graphically.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Quan Zhou ◽  
Yabing Sun

<p style='text-indent:20px;'>In this work, by combining the Feynman-Kac formula with an Itô-Taylor expansion, we propose a class of high order one-step schemes for backward stochastic differential equations, which can achieve at most six order rate of convergence and only need the terminal conditions on the last one step. Numerical experiments are carried out to show the efficiency and high order accuracy of the proposed schemes.</p>


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Hossein Jafari ◽  
Marek T. Malinowski ◽  
M. J. Ebadi

AbstractIn this paper, we consider fuzzy stochastic differential equations (FSDEs) driven by fractional Brownian motion (fBm). These equations can be applied in hybrid real-world systems, including randomness, fuzziness and long-range dependence. Under some assumptions on the coefficients, we follow an approximation method to the fractional stochastic integral to study the existence and uniqueness of the solutions. As an example, in financial models, we obtain the solution for an equation with linear coefficients.


Sign in / Sign up

Export Citation Format

Share Document