Initiation and termination of intraseasonal oscillations in nonlinear Laplacian spectral analysis-based indices

Author(s):  
Eniko Székely ◽  
Dimitrios Giannakis ◽  
Andrew J. Majda

AbstractWe present a statistical analysis of the initiation and termination of boreal winter and boreal summer intraseasonal oscillations (ISOs). This study uses purely convection (infrared brightness temperature) data over a 23-year time interval from 1984–2006. The indices are constructed via the nonlinear Laplacian spectral analysis (NLSA) method and display high intermittency and non-Gaussian statistics. We first define primary, terminal, and full events in the NLSA-based indices, and then examine their statistics through the associated two-dimensional phase space representations. Roughly one full event per year was detected for the Madden-Julian oscillation (MJO), and 1.3 full events per year for the boreal summer ISO.We also find that 91%of the recovered full MJO events are circumnavigating and exhibit very little to no retrograde (westward) propagation. The Indian Ocean emerges as the most active region in terms of both the onset and decay of events, however relevant activity occurs over all phases, consistent with previous work.

2018 ◽  
Vol 18 (16) ◽  
pp. 11973-11990 ◽  
Author(s):  
Alina Fiehn ◽  
Birgit Quack ◽  
Irene Stemmler ◽  
Franziska Ziska ◽  
Kirstin Krüger

Abstract. Oceanic very short-lived substances (VSLSs), such as bromoform (CHBr3), contribute to stratospheric halogen loading and, thus, to ozone depletion. However, the amount, timing, and region of bromine delivery to the stratosphere through one of the main entrance gates, the Indian summer monsoon circulation, are still uncertain. In this study, we created two bromoform emission inventories with monthly resolution for the tropical Indian Ocean and west Pacific based on new in situ bromoform measurements and novel ocean biogeochemistry modeling. The mass transport and atmospheric mixing ratios of bromoform were modeled for the year 2014 with the particle dispersion model FLEXPART driven by ERA-Interim reanalysis. We compare results between two emission scenarios: (1) monthly averaged and (2) annually averaged emissions. Both simulations reproduce the atmospheric distribution of bromoform from ship- and aircraft-based observations in the boundary layer and upper troposphere above the Indian Ocean reasonably well. Using monthly resolved emissions, the main oceanic source regions for the stratosphere include the Arabian Sea and Bay of Bengal in boreal summer and the tropical west Pacific Ocean in boreal winter. The main stratospheric injection in boreal summer occurs over the southern tip of India associated with the high local oceanic sources and strong convection of the summer monsoon. In boreal winter more bromoform is entrained over the west Pacific than over the Indian Ocean. The annually averaged stratospheric injection of bromoform is in the same range whether using monthly averaged or annually averaged emissions in our Lagrangian calculations. However, monthly averaged emissions result in the highest mixing ratios within the Asian monsoon anticyclone in boreal summer and above the central Indian Ocean in boreal winter, while annually averaged emissions display a maximum above the west Indian Ocean in boreal spring. In the Asian summer monsoon anticyclone bromoform atmospheric mixing ratios vary by up to 50 % between using monthly averaged and annually averaged oceanic emissions. Our results underline that the seasonal and regional stratospheric bromine injection from the tropical Indian Ocean and west Pacific critically depend on the seasonality and spatial distribution of the VSLS emissions.


2020 ◽  
Vol 33 (3) ◽  
pp. 805-823 ◽  
Author(s):  
Shuguang Wang

AbstractCharacteristic patterns of precipitation-associated tropical intraseasonal oscillations, including the Madden–Julian oscillation (MJO) and boreal summer intraseasonal oscillation (BSISO), are identified using local empirical orthogonal function (EOF) analysis of the Tropical Rainfall Measuring Mission (TRMM) precipitation data as a function of the day of the year. The explained variances of the EOF analysis show two peaks across the year: one in the middle of the boreal winter corresponding to the MJO and the other in the middle of summer corresponding to the BSISO. Comparing the fractional variance indicates that the BSISO is more coherent than the MJO during the TRMM period. Similar EOF analyses with the outgoing longwave radiation (OLR) confirm this result and indicate that the BSISO is less coherent before the TRMM era (1979–98). In contrast, the MJO exhibits much less decadal variability. A precipitation-based index for tropical intraseasonal oscillation (PII) is derived by projecting bandpass-filtered precipitation anomalies to the two leading EOFs as a function of day of the year. A real-time version that approximates the PII is further developed using precipitation anomalies without any bandpass filtering. It is further shown that this real-time PII index may be used to diagnose precipitation in the subseasonal forecasts.


2018 ◽  
Author(s):  
Alina Fiehn ◽  
Birgit Quack ◽  
Irene Stemmler ◽  
Franziska Ziska ◽  
Kirstin Krüger

Abstract. Oceanic very short-lived substances (VSLS), such as bromoform (CHBr3), contribute to stratospheric halogen loading and, thus, to ozone depletion. However, the amount, timing, and region of bromine delivery to the stratosphere through one of the main entrance gates, the Asian monsoon circulation, are still uncertain. In this study, we created two bromoform emission inventories with monthly resolution for the tropical Indian Ocean and west Pacific based on new in situ bromoform measurements and novel ocean biogeochemistry modeling. The mass transport and atmospheric mixing ratios of bromoform were modeled for the year 2014 with the particle dispersion model FLEXPART driven by ERA-Interim reanalysis. We compare results between two emission scenarios: (1) monthly and (2) annually averaged emissions. Both simulations reproduce the atmospheric distribution of bromoform from ship- and aircraft-based observations in the boundary layer and upper troposphere above the Indian Ocean well. Using monthly resolved emissions, main oceanic source regions for the stratosphere include the Arabian Sea and Bay of Bengal in boreal summer and the tropical west Pacific Ocean in boreal winter. The main stratospheric entrainment in boreal summer occurs over the southern tip of India associated with the high local oceanic sources and strong convection of the summer monsoon. In boreal winter more bromoform is entrained over the west Pacific than over the Indian Ocean. The annually averaged stratospheric entrainment of bromoform is in the same range whether using monthly or annually averaged emissions in our Lagrangian calculations. However, monthly averaged emissions result in highest mixing ratios within the Asian monsoon anticyclone in boreal summer and above the central Indian Ocean in boreal winter, while annually averaged emissions display a maximum above the west Indian Ocean in boreal spring. In the Asian summer monsoon anticyclone bromoform atmospheric mixing ratios vary up to 50 % between using monthly and annually averaged oceanic emissions. Our results underline that the seasonal and regional stratospheric bromine entrainment from the tropical Indian Ocean and west Pacific critically depends on the seasonality and spatial distribution of the VSLS emissions.


2011 ◽  
Vol 139 (8) ◽  
pp. 2421-2438 ◽  
Author(s):  
Ruiqiang Ding ◽  
Jianping Li ◽  
Kyong-Hwan Seo

AbstractTropical intraseasonal variability (TISV) shows two dominant modes: the boreal winter Madden–Julian oscillation (MJO) and the boreal summer intraseasonal oscillation (BSISO). The two modes differ in intensity, frequency, and movement, thereby presumably indicating different predictabilities. This paper investigates differences in the predictability limits of the BSISO and the boreal winter MJO based on observational data. The results show that the potential predictability limit of the BSISO obtained from bandpass-filtered (30–80 days) outgoing longwave radiation (OLR), 850-hPa winds, and 200-hPa velocity potential is close to 5 weeks, comparable to that of the boreal winter MJO. Despite the similarity between the potential predictability limits of the BSISO and MJO, the spatial distribution of the potential predictability limit of the TISV during summer is very different from that during winter. During summer, the limit is relatively low over regions where the TISV is most active, whereas it is relatively high over the North Pacific, North Atlantic, southern Africa, and South America. The spatial distribution of the limit during winter is approximately the opposite of that during summer. For strong phases of ISO convection, the initial error of the BSISO shows a more rapid growth than that of the MJO. The error growth is rapid when the BSISO and MJO enter the decaying phase (when ISO signals are weak), whereas it is slow when convection anomalies of the BSISO and MJO are located in upstream regions (when ISO signals are strong).


Oceanography ◽  
2021 ◽  
Vol 34 (1) ◽  
Author(s):  
Dwi Susanto ◽  
◽  
Jorina Waworuntu ◽  
Windy Prayogo ◽  
Agus Setianto

Newly released current velocity and temperature measurements in the Alas Strait collected from November 2005 to February 2007 permit calculation of the mean and variable transport of the Indonesian Throughflow (ITF) in this region. These data were collected by the Environmental Division of the Amman Mineral Nusa Tenggara mining company to serve as a guide for the deep submarine placement of tailings produced by the Batu Hijau open pit copper-gold mine. Ocean currents, temperatures, and winds in the Alas Strait region exhibit intraseasonal and seasonal variability, with modulation at interannual timescales that may be associated with intraseasonal Kelvin waves, the regional southeast monsoon, the El Niño Southern Oscillation, and the Indian Ocean Dipole (IOD). Currents in the Alas Strait were found to flow steadily southward not only during the boreal summer from mid-April to October but also when a prolonged anomalously easterly wind associated with positive IOD extended this flow direction through the end of December 2006. A steady shear between the northward-flowing upper layer and the southward-flowing layer beneath was recorded from November 2005 to early April 2006 and from January to February 2007. The 2006 annual transport was –0.25 Sv toward the Indian Ocean and varied from 0.4 Sv in early April 2006 to –0.75 Sv in August 2006. Hence, Alas Strait transport plays a dual role in the total ITF, increasing it during boreal summer and reducing it during boreal winter. Northward flows tend to carry warmer water from the Indian Ocean to the Flores Sea, while the southward ITF flow carries cooler water to the Indian Ocean. Although the Alas Strait is located next to the Lombok Strait—one of the major ITF exit passages—they have different current and temperature characteristics. For a more complete evaluation of the ITF, the Alas Strait must be included in any future monitoring.


2014 ◽  
Vol 27 (18) ◽  
pp. 7053-7068 ◽  
Author(s):  
Kaya Kanemaru ◽  
Hirohiko Masunaga

Abstract The current study is aimed at exploring the potential roles of the seasonally altering background surface wind in the seasonality of the intraseasonal oscillations (ISOs) with a focus on the sea surface temperature (SST) variability. A composite analysis of the ocean mixed layer heat budget in term of ISO phases with various satellite data is performed for boreal winter and summer. The scalar wind is found to be a dominant factor that accounts for the ocean surface heat budget, implying that the background surface wind as well as its anomaly is important for the SST variability. An easterly anomaly to the east of convection diminishes scalar wind, and thus latent heat flux, when superposed onto a background westerly wind, implying that the presence of basic westerly wind is important for the development of a warm SST anomaly ahead of the ISO convection. On the other hand, an easterly anomaly in combination with basic easterly wind magnifies scalar wind and latent heat flux and cancels out the shortwave heat flux anomaly. The seasonal migration of the background westerly wind, which is confined to a southern equatorial belt in boreal winter but spread across the northern Indian Ocean in boreal summer, may offer a mechanism that partly accounts for the seasonal characteristics of ISO propagation. The northward propagation of the SST variability associated with the boreal summer ISO is found to also involve a similar mechanism with the meridional wind modulation of scalar wind.


2008 ◽  
Vol 38 (1) ◽  
pp. 121-132 ◽  
Author(s):  
Lei Zhou ◽  
Raghu Murtugudde ◽  
Markus Jochum

Abstract The spatial and temporal features of intraseasonal oscillations in the southwestern Indian Ocean are studied by analyzing model simulations for the Indo-Pacific region. The intraseasonal oscillations have periods of 40–80 days with a wavelength of ∼650 km. They originate from the southeastern Indian Ocean and propagate westward as Rossby waves with a phase speed of ∼25 cm s−1 in boreal winter and spring. The baroclinic instability is the main driver for these intraseasonal oscillations. The first baroclinic mode dominates during most of the year, but during boreal winter and spring the second mode contributes significantly and often equally. Consequently, the intraseasonal oscillations are relatively strong in boreal winter and spring. Whether the atmospheric intraseasonal oscillations are also important for forcing the oceanic intraseasonal oscillations in the southwestern Indian Ocean needs further investigation.


Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 803
Author(s):  
Ran Wang ◽  
Lin Chen ◽  
Tim Li ◽  
Jing-Jia Luo

The Atlantic Niño/Niña, one of the dominant interannual variability in the equatorial Atlantic, exerts prominent influence on the Earth’s climate, but its prediction skill shown previously was unsatisfactory and limited to two to three months. By diagnosing the recently released North American Multimodel Ensemble (NMME) models, we find that the Atlantic Niño/Niña prediction skills are improved, with the multi-model ensemble (MME) reaching five months. The prediction skills are season-dependent. Specifically, they show a marked dip in boreal spring, suggesting that the Atlantic Niño/Niña prediction suffers a “spring predictability barrier” like ENSO. The prediction skill is higher for Atlantic Niña than for Atlantic Niño, and better in the developing phase than in the decaying phase. The amplitude bias of the Atlantic Niño/Niña is primarily attributed to the amplitude bias in the annual cycle of the equatorial sea surface temperature (SST). The anomaly correlation coefficient scores of the Atlantic Niño/Niña, to a large extent, depend on the prediction skill of the Niño3.4 index in the preceding boreal winter, implying that the precedent ENSO may greatly affect the development of Atlantic Niño/Niña in the following boreal summer.


2006 ◽  
Vol 19 (17) ◽  
pp. 4378-4396 ◽  
Author(s):  
Renguang Wu ◽  
Ben P. Kirtman

Abstract The present study documents the influence of El Niño and La Niña events on the spread and predictability of rainfall, surface pressure, and 500-hPa geopotential height, and contrasts the relative contribution of signal and noise changes to the predictability change based on a long-term integration of an interactive ensemble coupled general circulation model. It is found that the pattern of the El Niño–Southern Oscillation (ENSO)-induced noise change for rainfall follows closely that of the corresponding signal change in most of the tropical regions. The noise for tropical Pacific surface pressure is larger (smaller) in regions of lower (higher) mean pressure. The ENSO-induced noise change for 500-hPa height displays smaller spatial scales compared to and has no systematic relationship with the signal change. The predictability for tropical rainfall and surface pressure displays obvious contrasts between the summer and winter over the Bay of Bengal, the western North Pacific, and the tropical southwestern Indian Ocean. The predictability for tropical 500-hPa height is higher in boreal summer than in boreal winter. In the equatorial central Pacific, the predictability for rainfall is much higher in La Niña years than in El Niño years. This occurs because of a larger percent reduction in the amplitude of noise compared to the percent decrease in the magnitude of signal from El Niño to La Niña years. A consistent change is seen in the predictability for surface pressure near the date line. In the western North and South Pacific, the predictability for boreal winter rainfall is higher in El Niño years than in La Niña years. This is mainly due to a stronger signal in El Niño years compared to La Niña years. The predictability for 500-hPa height increases over most of the Tropics in El Niño years. Over western tropical Pacific–Australia and East Asia, the predictability for boreal winter surface pressure and 500-hPa height is higher in El Niño years than in La Niña years. The predictability change for 500-hPa height is primarily due to the signal change.


Sign in / Sign up

Export Citation Format

Share Document