scholarly journals A Precipitation-Based Index for Tropical Intraseasonal Oscillations

2020 ◽  
Vol 33 (3) ◽  
pp. 805-823 ◽  
Author(s):  
Shuguang Wang

AbstractCharacteristic patterns of precipitation-associated tropical intraseasonal oscillations, including the Madden–Julian oscillation (MJO) and boreal summer intraseasonal oscillation (BSISO), are identified using local empirical orthogonal function (EOF) analysis of the Tropical Rainfall Measuring Mission (TRMM) precipitation data as a function of the day of the year. The explained variances of the EOF analysis show two peaks across the year: one in the middle of the boreal winter corresponding to the MJO and the other in the middle of summer corresponding to the BSISO. Comparing the fractional variance indicates that the BSISO is more coherent than the MJO during the TRMM period. Similar EOF analyses with the outgoing longwave radiation (OLR) confirm this result and indicate that the BSISO is less coherent before the TRMM era (1979–98). In contrast, the MJO exhibits much less decadal variability. A precipitation-based index for tropical intraseasonal oscillation (PII) is derived by projecting bandpass-filtered precipitation anomalies to the two leading EOFs as a function of day of the year. A real-time version that approximates the PII is further developed using precipitation anomalies without any bandpass filtering. It is further shown that this real-time PII index may be used to diagnose precipitation in the subseasonal forecasts.

2011 ◽  
Vol 139 (8) ◽  
pp. 2421-2438 ◽  
Author(s):  
Ruiqiang Ding ◽  
Jianping Li ◽  
Kyong-Hwan Seo

AbstractTropical intraseasonal variability (TISV) shows two dominant modes: the boreal winter Madden–Julian oscillation (MJO) and the boreal summer intraseasonal oscillation (BSISO). The two modes differ in intensity, frequency, and movement, thereby presumably indicating different predictabilities. This paper investigates differences in the predictability limits of the BSISO and the boreal winter MJO based on observational data. The results show that the potential predictability limit of the BSISO obtained from bandpass-filtered (30–80 days) outgoing longwave radiation (OLR), 850-hPa winds, and 200-hPa velocity potential is close to 5 weeks, comparable to that of the boreal winter MJO. Despite the similarity between the potential predictability limits of the BSISO and MJO, the spatial distribution of the potential predictability limit of the TISV during summer is very different from that during winter. During summer, the limit is relatively low over regions where the TISV is most active, whereas it is relatively high over the North Pacific, North Atlantic, southern Africa, and South America. The spatial distribution of the limit during winter is approximately the opposite of that during summer. For strong phases of ISO convection, the initial error of the BSISO shows a more rapid growth than that of the MJO. The error growth is rapid when the BSISO and MJO enter the decaying phase (when ISO signals are weak), whereas it is slow when convection anomalies of the BSISO and MJO are located in upstream regions (when ISO signals are strong).


2017 ◽  
Vol 74 (4) ◽  
pp. 1321-1342 ◽  
Author(s):  
Romeo Alexander ◽  
Zhizhen Zhao ◽  
Eniko Székely ◽  
Dimitrios Giannakis

Abstract This paper presents the results of forecasting the Madden–Julian oscillation (MJO) and boreal summer intraseasonal oscillation (BSISO) through the use of satellite-obtained global brightness temperature data with a recently developed nonparametric empirical method. This new method, referred to as kernel analog forecasting, adopts specific indices extracted using the technique of nonlinear Laplacian spectral analysis as baseline definitions of the intraseasonal oscillations of interest, which are then extended into forecasts through an iterated weighted averaging scheme that exploits the predictability inherent to those indices. The pattern correlation of the forecasts produced in this manner remains above 0.6 for 50 days for both the MJO and BSISO when 23 yr of training data are used and 37 days for the MJO when 9 yr of data are used.


2016 ◽  
Vol 29 (19) ◽  
pp. 7009-7025 ◽  
Author(s):  
Li Deng ◽  
Tim Li

Abstract The interannual variability of the boreal summer intraseasonal oscillation (BSISO) is investigated using observed outgoing longwave radiation (OLR) and ERA-Interim data for the period of 1980–2012. It is found that the interannual variability of BSISO intensity is much stronger in the tropical western Pacific (TWP) than the tropical Indian Ocean (TIO). A BSISO intensity index is defined based on a multivariate EOF analysis in TWP. It is found that strong BSISO years are associated with El Niño–like sea surface temperature anomalies in the tropical Pacific, anomalous easterly shear, and enhanced background moisture condition in the region. Using a 2.5-layer atmospheric model with a specified idealized background mean state, the authors further examine the relative roles of background moisture and vertical shear fields in modulating the BSISO intensity. Sensitivity numerical experiments indicate that the background moisture change is most important in regulating the BSISO intensity, whereas the background vertical shear change also plays a role.


2019 ◽  
Vol 147 (1) ◽  
pp. 389-406 ◽  
Author(s):  
Casey R. Densmore ◽  
Elizabeth R. Sanabia ◽  
Bradford S. Barrett

AbstractThe quasi-biennial oscillation (QBO) is stratified by stratospheric zonal wind direction and height into four phase pairs [easterly midstratospheric winds (QBOEM), easterly lower-stratospheric winds, westerly midstratospheric winds (QBOWM), and westerly lower-stratospheric winds] using an empirical orthogonal function analysis of daily stratospheric (100–10 hPa) zonal wind data during 1980–2017. Madden–Julian oscillation (MJO) events in which the MJO convective envelope moved eastward across the Maritime Continent (MC) during 1980–2017 are identified using the Real-time Multivariate MJO (RMM) index and the outgoing longwave radiation (OLR) MJO index (OMI). Comparison of RMM amplitudes by the QBO phase pair over the MC (RMM phases 4 and 5) reveals that boreal winter MJO events have the strongest amplitudes during QBOEM and the weakest amplitudes during QBOWM, which is consistent with QBO-driven differences in upper-tropospheric lower-stratospheric (UTLS) static stability. Additionally, boreal winter RMM events over the MC strengthen during QBOEM and weaken during QBOWM. In the OMI, those amplitude changes generally shift eastward to the eastern MC and western Pacific Ocean, which may result from differences in RMM and OMI index methodologies. During boreal summer, as the northeastward-propagating boreal summer intraseasonal oscillation (BSISO) becomes the dominant mode of intraseasonal variability, these relationships are reversed. Zonal differences in UTLS stability anomalies are consistent with amplitude changes of eastward-propagating MJO events across the MC during boreal winter, and meridional stability differences are consistent with amplitude changes of northeastward-propagating BSISO events during boreal summer. Results remain consistent when stratifying by neutral ENSO phase.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Churchill Okonkwo ◽  
Belay Demoz ◽  
Sium Tesfai

The interannual variability of West African jet streams and their association with rainfall are reexamined using European Reanalysis ERA-Interim 1979–2011. The objective of the study is to characterize their climatology and role in rainfall variability in western Sahel. Wavelet analysis was used on wind speed data and implications to ENSO were discussed subsequently. Our results show that while the low-level African Westerly Jet (AWJ) correlates well with rainfall south of the equator in boreal winter months, the Tropical Easterly Jet (TEJ) and African Easterly Jet (AEJ) correlate better with rainfall north of the equator in the boreal summer months. Results of interannual-to-decadal variability in 200 mb, 600 mb, and 850 mb of zonal wind reveal that there is enhanced variability in the 2–8 year band. Also, the TEJ, AEJ, and AWJ fluctuations are coupled with variations in southern oscillation. Further analysis suggests a statistically significant association between TEJ and the El Niño events of the 1980s that led to intense drought in the Sahel region of West Africa. The 2007 moderate La Niña shows a statistically significant coherence with the 500 mb, 600 mb, and 850 mb jets. These associations are also phase locked, suggesting that the association may be more than by chance.


2011 ◽  
Vol 24 (20) ◽  
pp. 5435-5453 ◽  
Author(s):  
Yu Kosaka ◽  
Shang-Ping Xie ◽  
Hisashi Nakamura

Abstract The summertime mei-yu–baiu rainband over East Asia displays considerable interannual variability. A singular value decomposition (SVD) analysis for interannual variability reveals that precipitation anomalies over the mei-yu–baiu region are accompanied by in situ anomalies of midtropospheric horizontal temperature advection. Anomalous warm (cool) advection causes increased (decreased) mei-yu–baiu precipitation locally by inducing adiabatic ascent (descent). The anomalous precipitation acts to reinforce the vertical motion, forming a feedback system. By this mechanism, the remotely forced anomalous atmospheric circulation can induce changes in mei-yu–baiu precipitation. The quasi-stationary precipitation anomalies induced by this mechanism are partially offset by transient eddies. The SVD analysis also reveals the association of mei-yu–baiu precipitation anomalies with several teleconnection patterns, suggesting remote induction mechanisms. The Pacific–Japan (PJ) teleconnection pattern, which is associated with anomalous convection over the tropical western North Pacific, contributes to mei-yu–baiu precipitation variability throughout the boreal summer. The PJ pattern mediates influences of the El Niño–Southern Oscillation in preceding boreal winter on mei-yu–baiu precipitation. In early summer, the leading covariability pattern between precipitation and temperature advection also features the Silk Road pattern—a wave train along the summertime Asian jet—and another wave train pattern to the north along the polar-front jet that often leads to the development of the surface Okhotsk high.


2008 ◽  
Vol 21 (22) ◽  
pp. 5870-5886 ◽  
Author(s):  
Kathy Pegion ◽  
Ben P. Kirtman

Abstract This study investigates whether air–sea interactions contribute to differences in the predictability of the boreal winter tropical intraseasonal oscillation (TISO) using the NCEP operational climate model. A series of coupled and uncoupled, “perfect” model predictability experiments are performed for 10 strong model intraseasonal events. The uncoupled experiments are forced by prescribed SST containing different types of variability. These experiments are specifically designed to be directly comparable to actual forecasts. Predictability estimates are calculated using three metrics, including one that does not require the use of time filtering. The estimates are compared between these experiments to determine the impact of coupled air–sea interactions on the predictability of the tropical intraseasonal oscillation and the sensitivity of the potential predictability estimates to the different SST forcings. Results from all three metrics are surprisingly similar. They indicate that predictability estimates are longest for precipitation and outgoing longwave radiation (OLR) when the ensemble mean from the coupled model is used. Most importantly, the experiments that contain intraseasonally varying SST consistently predict the control events better than those that do not for precipitation, OLR, 200-hPa zonal wind, and 850-hPa zonal wind after the first 10 days. The uncoupled model is able to predict the TISO with similar skill to that of the coupled model, provided that an SST forecast that includes these intraseasonal variations is used to force the model. This indicates that the intraseasonally varying SSTs are a key factor for increased predictability and presumably better prediction of the TISO.


Author(s):  
Michael B. Natoli ◽  
Eric D. Maloney

AbstractThe impact of quasi-biweekly variability in the monsoon southwesterly winds on the precipitation diurnal cycle in the Philippines is examined using CMORPH precipitation, ERA5 reanalysis, and outgoing longwave radiation (OLR) fields. Both a case study during the 2018 Propagation of Intraseasonal Tropical Oscillations (PISTON) field campaign and a 23-year composite analysis are used to understand the effect of the QBWO on the diurnal cycle. QBWO events in the west Pacific, identified with an extended EOF index, bring increases in moisture, cloudiness, and westerly winds to the Philippines. Such events are associated with significant variability in daily mean precipitation and the diurnal cycle. It is shown that the modulation of the diurnal cycle by the QBWO is remarkably similar to that by the boreal summer intraseasonal oscillation (BSISO). The diurnal cycle reaches a maximum amplitude on the western side of the Philippines on days with average to above average moisture, sufficient insolation, and weakly offshore prevailing wind. This occurs during the transition period from suppressed to active large-scale convection for both the QBWO and BSISO.Westerly monsoon surges associated with QBWO variability generally exhibit active precipitation over the South China Sea (SCS), but a depressed diurnal cycle. These results highlight that modes of large-scale convective variability in the tropics can have a similar impact on the diurnal cycle if they influence the local scale environmental background state similarly.


2011 ◽  
Vol 24 (3) ◽  
pp. 942-961 ◽  
Author(s):  
Pang-Chi Hsu ◽  
Tim Li

Abstract The interactions between the boreal summer intraseasonal oscillation (ISO) and synoptic-scale variability (SSV) are investigated by diagnosing the atmospheric apparent heat source (Q1), apparent moisture sink (Q2), and eddy momentum transport. It is found that the synoptic Q1 and Q2 heating (cooling) anomalies are in phase with cyclonic (anticyclonic) vorticity disturbances, aligned in a southeast–northwest-oriented wave train pattern over the western North Pacific (WNP). The wave train is well organized and strengthened (loosely organized and weakened) during the ISO active (suppressed) phase. The nonlinearly rectified Q1 and Q2 fields due to the eddy–mean flow interaction account for 10%–30% of the total intraseasonal Q1 and Q2 variabilities over the WNP. During the ISO active (suppressed) phase, the nonlinearly rectified intraseasonal Q1 and Q2 heating (cooling) appear to the northwest of the ISO enhanced (suppressed) convection center, favoring the northwestward propagation of the ISO. A diagnosis of the zonal momentum budget shows that the eddy momentum flux convergence forces an intraseasonal westerly (easterly) tendency to the north of the ISO westerly (easterly) center during the ISO active (suppressed) phase. As a result, the eddy momentum transport may contribute to the northward propagation of the boreal summer ISO over the WNP.


2013 ◽  
Vol 141 (3) ◽  
pp. 1124-1138 ◽  
Author(s):  
Hai Lin

Abstract In this study, a new index is defined to capture the prominent northward propagation of the intraseasonal oscillation (ISO) in boreal summer in the East Asian and western North Pacific (EAWNP) region. It is based on the first two modes of empirical orthogonal function (EOF) analysis of the combined fields of daily anomalies of zonally averaged outgoing longwave radiation (OLR) and 850-hPa zonal wind (U850) in the EAWNP region. These two EOFs are well separated from the rest of the modes, and their principal components (PCs) capture the intraseasonal variability. They are nearly in quadrature in both space and time and their combination reasonably well represents the northward propagation of the ISO. As no future information beyond the current date is required as in conventional time filtering, this ISO index can be used in real-time applications. This index is applied to the output of the 24-yr historical hindcast experiment using the Global Environmental Multiscale (GEM) model of Environment Canada to evaluate the forecast skill of the ISO of the EAWNP summer monsoon.


Sign in / Sign up

Export Citation Format

Share Document