Density functional theory study on the adsorption of valproic acid to doped fullerenes

2018 ◽  
Vol 41 (3-4) ◽  
pp. 67-71 ◽  
Author(s):  
Özgür Alver ◽  
Cemal Parlak ◽  
Mustafa Şenyel ◽  
Ponnadurai Ramasami

Abstract Fullerenes and heteroatom doped fullerenes exhibit high potential as drug delivery agents in sensor technology and medical applications. We investigated, using density functional theory, the possible interaction sites and the nature of interaction, adsorption energy assessments, band gap energy evaluations, charge transfer analyses, and some diagnostic vibrational band assignments for valproic acid (VPA) and aluminum, silicon, and boron decorated fullerene systems. The present research shows that VPA has strong interaction with the doped fullerene cages particularly at its carbonyl edge. Therefore, these doped fullerenes can be suggested as possible drug delivery agents.

Author(s):  
Ying Xuan Ng ◽  
Rashid Ahmed ◽  
Abdullahi Lawal ◽  
Bakhtiar Ul Haq ◽  
Afiq Radzwan ◽  
...  

The knowledge of the structural and electronic properties of a material is important in various applications such as optoelectronics and thermoelectric devices. In this study, we are using full potential linearized augmented plane wave method framed within density functional theory provided by WIEN2k to optimize the structure of PdSe2 in orthorhombic (Pbca) phase and calculate its electronic properties. With the implementation of local density approximation (LDA), Perdew-Burke-Ernzerhof parameterization of generalized gradient approximation (PBE-GGA), Wu-Cohen parameterization of GGA (WC-GGA), and PBE correction for solid GGA (PBEsol-GGA), the computed results of lattice constants are found to be within 5% error with the experiment data. Also, our calculated indirect band gap energy was found to be ~0.24 eV by LDA along with modified Becke-Johnson potential functional (mBJ) with experimental lattice constants and ~0.52 eV by using PBE-GGA with optimized lattice constants. However, the effect of spin-orbit coupling is not found too much on the band gap energy. By analyzing the partial density of states, we identify that d-orbital of Pd is demonstrating a slightly more significant contribution to both the valence and conduction band near to Fermi level which is also in agreement with the previous first principles study.


2019 ◽  
Vol 8 (2) ◽  
pp. 553-557 ◽  

Model molecules for sodium carboxymethyl cellulose (Na-CMC) (monomer), glycerol, acetic acid and Na-CMC-glycerol-acetic acid are optimized with Density Functional Theory (DFT) at B3LYP/3-21G*. For the optimized models, total dipole moment (TDM), the highest occupied and lowest unoccupied molecular orbitals (HOMO/LUMO band gap energy), and molecular electrostatic potentials (ESP) are calculated at the same method to give an explanation for the possibility of using Na-CMC-Glycerol-acetic acid model molecule in electrochemical devices, gas sensors and batteries. As a result of the substitution of Na-CMC with glycerol, TDM increased from 7.7141 Debye to 22.4942 Debye which is approximately equal to three times that of Na-CMC. However, HOMO/LUMO band gap energy decreased from 0.9040 eV to 0.5072 eV. After the addition of acetic acid to Na-CMC-glycerol model, TDM increased to24.7270 Debye and HOMO/LUMO band gap energy decreased to 0.4939 eV. Both TDM and HOMO/LUMO band gap energy values are improved by increasing the acetic acid units, where TDM became 25.3510 Debye and HOMO/LUMO band gap energy decreased to 0.3815 eV. The results of ESP indicated that the addition of glycerol and acetic acid to Na-CMC increased the electronegativity of Na-CMC which in turn enhanced its electronic properties.


2011 ◽  
Vol 10 (03) ◽  
pp. 381-390
Author(s):  
MANUEL ALBERTO FLORES-HIDALGO ◽  
DIANA BARRAZA-JIMÉNEZ ◽  
DANIEL GLOSSMAN-MITNIK

Zinc oxide ( ZnO ) electrical properties can be modified by addition of impurities or defects such as vacancies or other substances. We use sulfur ( S ) as a substitutional impurity and present a theoretical study on the characteristics of ZnO structures in its crystal form containing S in substitution of O . For theoretical calculations we used Density Functional Theory (DFT) with pseudopotentials and plane waves. ZnO in crystal form with S in substitution of O at heavy percentage was studied by analyzing properties like lattice characteristics, total energy, and gap energy. Lattice parameters a, b, c, and c/a ratio increase with the S -substituent percentage while the crystal stability decreases. Variation of gap energy shows a decreasing trend with increasing amount of substitution. In this paper, we provide a detailed data useful to identify the effects on ZnO in its crystal form when O is replaced by S that will help to predict if the structural changes on the modified ZnO structures may be suitable for applications in opto-electronics.


Sign in / Sign up

Export Citation Format

Share Document