scholarly journals Ultracompact vanadium dioxide dual-mode plasmonic waveguide electroabsorption modulator

nano Online ◽  
2019 ◽  
Author(s):  
Kelvin J.A. Ooi ◽  
Ping Bai ◽  
Hong Son Chu ◽  
Lay Kee Ang
Nanophotonics ◽  
2013 ◽  
Vol 2 (1) ◽  
pp. 13-19 ◽  
Author(s):  
Kelvin J.A. Ooi ◽  
Ping Bai ◽  
Hong Son Chu ◽  
Lay Kee Ang

AbstractSubwavelength modulators play an indispensable role in integrated photonic-electronic circuits. Due to weak light-matter interactions, it is always a challenge to develop a modulator with a nanometer scale footprint, low switching energy, low insertion loss and large modulation depth. In this paper, we propose the design of a vanadium dioxide dual-mode plasmonic waveguide electroabsorption modulator using a metal-insulator-VO2-insulator-metal (MIVIM) waveguide platform. By varying the index of vanadium dioxide, the modulator can route plasmonic waves through the low-loss dielectric insulator layer during the “on” state and high-loss VO2 layer during the “off” state, thereby significantly reducing the insertion loss while maintaining a large modulation depth. This ultracompact waveguide modulator, for example, can achieve a large modulation depth of ~10 dB with an active size of only 200×50×220 nm3 (or ~λ3/1700), requiring a drive-voltage of ~4.6 V. This high performance plasmonic modulator could potentially be one of the keys towards fully-integrated plasmonic nanocircuits in the next-generation chip technology.


2009 ◽  
Vol E92-C (3) ◽  
pp. 288-295
Author(s):  
Kazunori YAMANAKA ◽  
Kazuaki KURIHARA ◽  
Akihiko AKASEGAWA ◽  
Masatoshi ISHII ◽  
Teru NAKANISHI

2016 ◽  
Vol E99.C (7) ◽  
pp. 817-819 ◽  
Author(s):  
Jun SHIBAYAMA ◽  
Yusuke WADA ◽  
Junji YAMAUCHI ◽  
Hisamatsu NAKANO

2016 ◽  
Vol 26 (4) ◽  
pp. 319-347 ◽  
Author(s):  
Han-Yu Deng ◽  
Feng Feng ◽  
Xiao-Song Wu

Author(s):  
Christer Fureby ◽  
J. Tegner ◽  
R. Farinaccio ◽  
Robert Stowe ◽  
D. Alexander

2015 ◽  
Vol 9 (1) ◽  
pp. 2303-2310
Author(s):  
Abderrahim Benchaib ◽  
Abdesselam Mdaa ◽  
Izeddine Zorkani ◽  
Anouar Jorio

The vanadium dioxide VO₂ currently became very motivating for the nanotechnologies’ researchers. It makes party of the intelligent materials because these optical properties abruptly change semiconductor state with metal at a critical  temperature θ = 68°C. This transition from reversible phase is carried out from a monoclinical structure characterizing its semiconductor state at low temperature towards the metal state of this material which becomes tétragonal rutile for  θ ˃ 68°C ; it is done during a few nanoseconds. Several studies were made on this material in a massive state and a thin layer. We will simulate by Maple the constant optics of a thin layer of VO₂ thickness z = 82 nm for the metal state according to the energy ω of the incidental photons in the energy interval: 0.001242 ≤ ω(ev) ≤ 6, from the infra-red (I.R) to the ultra-violet (U.V) so as to be able to control the various technological nano applications, like the detectors I.R or the U.V,  the intelligent windows to  increase  the energy efficiency in the buildings in order to save the cost of energy consumption by electric air-conditioning and the paintings containing nano crystals of this material. The constant optics, which we will simulate, is: the index of refraction, the reflectivity, the transmittivity, the coefficient of extinction, the dielectric functions ԑ₁ real part and  ԑ₂  imaginary part of the permittivity complexes ԑ of this material and the coefficient absorption. 


Sign in / Sign up

Export Citation Format

Share Document