scholarly journals Polarization-independent tunable optical filter with variable bandwidth based on silicon-on-insulator waveguides

Nanophotonics ◽  
2018 ◽  
Vol 7 (8) ◽  
pp. 1469-1477 ◽  
Author(s):  
Haoyan Wang ◽  
Jincheng Dai ◽  
Hao Jia ◽  
Sizhu Shao ◽  
Xin Fu ◽  
...  

AbstractWe present a polarization-independent tunable optical filter with variable bandwidth based on silicon-on-insulator (SOI) waveguides. The polarization-independent operation is achieved through the use of a polarization splitter-rotator and a polarization rotator-combiner, which are based on a bilevel adiabatic taper and an asymmetric directional coupler. Two stages of second-order microring resonators (MRRs) with different radii are used to achieve wavelength filtering with variable bandwidth and large free spectral range (FSR). Each stage of the second-order MRRs has a flat-top spectrum. The central wavelength of the filter is tuned by synchronous tuning of the two stages. The 3 dB bandwidth is adjusted via intentional misalignment of the passbands of the two stages. We demonstrate a prototype of such an optical filter on the SOI platform. The FSR of the fabricated device is about 90 nm. We show the tuning of the central wavelength from 1460 to 1550 nm. We adjust the 3 dB bandwidth from 37.5 to 100 GHz with a step of 12.5 GHz, with the overall insertion loss varying from −5.4 to −7.9 dB.

2012 ◽  
Vol 6-7 ◽  
pp. 194-199
Author(s):  
Zhe Li ◽  
Hua Juan Qi ◽  
Yong Chuan Xiao ◽  
Feng Li Gao

An integrated TOF (Tunable Optical Filter) based on thermo-optic effect in Silicon on insulator (SOI) rib waveguide is designed and simulated. The device is comprised of two high refractivity contrast Si/Air stacks, functioning as high reflectivity of DBRs and separated by a variable refractive index Si F-P cavity. The output characteristics are calculated and simulated based on Transfer Matrix Method (TMM). Wavelength tuning is achieved through thermal modulation of refractive variation of the cavity.As the cavity Si is heated,the refractive index of the cavity increases.When the temperature of cavity Si changes within100°C,the central wavelength gets a continuous 8nm shift from 1550nm to 1558nm, which is right located in the WDM (Wavelength division multiplexing) networks operating at C-band. Moreover, by calculating, the tuning sensitivity is about 0.08nm/°C. Owing to the compact size and excellent characteristics of integration, the proposed component has a promising utilization in spectroscopy and optical communication.


2011 ◽  
Vol 181-182 ◽  
pp. 273-276
Author(s):  
Shi Chao Zhang ◽  
Yu Hua Huang

An optical tunable filter with variable bandwidth has been demonstrated using two cholesteric liquid crystals. The incident light was first reflected by the first cholesteric liquid crystal and then by the second one. By rotating the two cholesteric liquid crystals simultaneously, the central wavelength can be tuned. By fixing one of the cholesteric liquid crystals and rotating the other one, the bandwidth of the tunable filter can be varied. The central wavelength of the tunable optical filter can be tuned from 513.4 nm to 576.8 nm and the bandwidth is varied from 10 nm to 80 nm. This property will allow it to be widely used in many fields, including optical communications and multispectral and hyperspectral imaging systems.


1990 ◽  
Vol 56 (3) ◽  
pp. 209-211 ◽  
Author(s):  
D. A. Smith ◽  
J. E. Baran ◽  
K. W. Cheung ◽  
J. J. Johnson

2010 ◽  
Vol 143-144 ◽  
pp. 196-200
Author(s):  
Xiao Li Zhang ◽  
Da Kai Liang ◽  
Jie Zeng

A wavelength tunable optical filter based on a fiber Bragg grating using piezoelectric bimorph is realized in this paper, and the tuning condition is theoretically and experimentally analyzed. The Bragg central wavelength of the filter can be easily tuned adopting to a DC voltage. The maximum strain of the central wavelength depends upon the maximum operating voltage, and the tuning range efficiency was as high as 1.2pm/V, the reflectivity, shape and the reflective spectrums of the fiber Bragg grating central wavelength almost keep unchanged before and after tunning. This paper provides a reference for optical fiber Bragg grating tuner.with high efficiency.


2011 ◽  
Vol 378-379 ◽  
pp. 549-552
Author(s):  
H. Hazura ◽  
A.R. Hanim ◽  
B. Mardiana ◽  
S. Shaari ◽  
B.Y. Majlis ◽  
...  

In this paper, we presented the performance analysis of Silicon- on- Insulator (SOI) based, four channels optical wavelength demultiplexer using microrings. The characterizations are done employing Finite- Difference Time- Domain (FDTD) mode simulations from RSOFT. Serially cascaded microring arrays up to the third order are demonstrated to discuss the design issues of the laterally coupled wavelength demultiplexer. Characteristics like the Free Spectral Range (FSR), crosstalk and insertion loss losses are studied.


Sign in / Sign up

Export Citation Format

Share Document