scholarly journals Optical Potts machine through networks of three-photon down-conversion oscillators

Nanophotonics ◽  
2020 ◽  
Vol 9 (13) ◽  
pp. 4199-4205 ◽  
Author(s):  
Mostafa Honari-Latifpour ◽  
Mohammad-Ali Miri

AbstractIn recent years, there has been a growing interest in optical simulation of lattice spin models for applications in unconventional computing. Here, we propose optical implementation of a three-state Potts spin model by using networks of coupled parametric oscillators with phase tristability. We first show that the cubic nonlinear process of spontaneous three-photon down-conversion is accompanied by a tristability in the phase of the subharmonic signal between three states with 2π/3 phase contrast. The phase of such a parametric oscillator behaves like a three-state spin system. Next, we show that a network of dissipatively coupled three-photon down-conversion oscillators emulates the three-state planar Potts model. We discuss potential applications of the proposed system for all-optical optimization of combinatorial problems such as graph 3-COL and MAX 3-CUT.

2003 ◽  
Vol 18 (9) ◽  
pp. 2097-2100 ◽  
Author(s):  
Xiongwei Jiang ◽  
Jianrong Qiu ◽  
Huidan Zeng ◽  
Congshan Zhu

We report on the observation of space-selective precipitation of gold nanoparticles in Au2O-doped silicate glass by a method of irradiation with an 800-nm femtosecond laser and further heat treatment. The irradiated region of the glass first became gray in color after irradiation with the femtosecond laser and then turned red after further heat treatment at around 520 °C, indicating that gold nanoparticles have precipitated in the irradiated region of the glass. A possible mechanism has been suggested that the Au+ ions in the region irradiated are reduced to Au0 atoms by the femtosecond laser, and then the Au0 atoms accumulate to form gold nanoparticles with the glass sample heat treated. The observed phenomenon should have potential applications in the fabrication of ultrafast all-optical switches.


2012 ◽  
Vol 20 (17) ◽  
pp. 19322 ◽  
Author(s):  
Alireza Marandi ◽  
Nick C. Leindecker ◽  
Konstantin L. Vodopyanov ◽  
Robert L. Byer

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Ran Liu ◽  
Yu Chen ◽  
Min Jiang ◽  
Xiaodong Yang ◽  
Ze Wu ◽  
...  

AbstractCritical quantum metrology, which exploits quantum critical systems as probes to estimate a physical parameter, has gained increasing attention recently. However, the critical quantum metrology with a continuous quantum phase transition (QPT) is experimentally challenging since a continuous QPT only occurs at the thermodynamic limit. Here, we propose an adiabatic scheme on a perturbed Ising spin model with a first-order QPT. By introducing a small transverse magnetic field, we can not only encode an unknown parameter in the ground state but also tune the energy gap to control the evolution time of the adiabatic passage. Moreover, we experimentally implement the critical quantum metrology scheme using nuclear magnetic resonance techniques and show that at the critical point the precision achieves the Heisenberg scaling as 1/T. As a theoretical proposal and experimental implementation of the adiabatic scheme of critical quantum metrology and its advantages of easy implementation, inherent robustness against decays and tunable energy gap, our adiabatic scheme is promising for exploring potential applications of critical quantum metrology on various physical systems.


2020 ◽  
Vol 10 (17) ◽  
pp. 5766
Author(s):  
Xiuju Zhao ◽  
Bin Xu ◽  
Xiangna Kong ◽  
Dong Zhong ◽  
Ming Fang ◽  
...  

The optical bistability, tristability and multistability are explored in arrays of graphene. The arrays are periodically arranged spatially by single sheets of graphene. Optical bistability could be achieved with a strong enough incident intensity of light wave. The thresholds of optical bistability and the intervals between the upper and lower thresholds change with the surface conductivity of graphene and the incident wavelength. By increasing the intensity of incident light, tristability and multistability can be induced as well. Furthermore, the thresholds of bistability, tristability and multistability can be regulated via the chemical potential of graphene. This study may have potential applications in optical logic gates, all-optical switches and photomemory.


2020 ◽  
Author(s):  
Wenbin He ◽  
Meng Pang ◽  
Dung-Han Yeh ◽  
Jiapeng Huang ◽  
Philip Russell

Abstract Mode-locked lasers have been widely used to explore interactions between optical solitons, including bound-soliton states that may be regarded as "photonic molecules". Conventional mode-locked lasers normally however host at most only a few solitons, which means that stochastic behaviours involving large numbers of solitons cannot easily be studied under controlled experimental conditions. Here we report the use of an optoacoustically mode-locked fibre laser to create hundreds of temporal traps or "reactors" in parallel, within each of which multiple solitons can be isolated and controlled both globally and individually using all-optical method. We achieve on-demand synthesis and dissociation of soliton molecules within these reactors, in this way unfolding a novel panorama of diverse dynamics in which the statistics of multi-soliton interactions can be studied. The results are of crucial importance in understanding dynamical soliton interactions, and may motivate potential applications for all-optical control of ultrafast light fields in optical resonators.


Sign in / Sign up

Export Citation Format

Share Document