scholarly journals Transition to strong coupling regime in hybrid plasmonic systems: exciton-induced transparency and Fano interference

Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Tigran V. Shahbazyan

Abstract We present a microscopic model describing the transition to a strong coupling regime for an emitter resonantly coupled to a surface plasmon in a metal–dielectric structure. We demonstrate that the shape of scattering spectra is determined by an interplay of two distinct mechanisms. First is the near-field coupling between the emitter and the plasmon mode which underpins energy exchange between the system components and gives rise to exciton-induced transparency minimum in scattering spectra prior to the transition to a strong coupling regime. The second mechanism is the Fano interference between the plasmon dipole and the plasmon-induced emitter’s dipole as the system interacts with the radiation field. We show that the Fano interference can strongly affect the overall shape of scattering spectra, leading to the inversion of spectral asymmetry that was recently reported in the experiment.

2013 ◽  
Vol 103 (10) ◽  
pp. 101106 ◽  
Author(s):  
Wei Cao ◽  
Ranjan Singh ◽  
Caihong Zhang ◽  
Jiaguang Han ◽  
Masayoshi Tonouchi ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2039
Author(s):  
Ping Gu ◽  
Xiaofeng Cai ◽  
Guohua Wu ◽  
Chenpeng Xue ◽  
Jing Chen ◽  
...  

We study theoretically the Fano resonances (FRs) produced by the near-field coupling between the lowest-order (dipolar) sphere plasmon resonance and the dipolar cavity plasmon mode supported by an Ag nanoshell or the hybrid mode in a simple three-layered Ag nanomatryushka constructed by incorporating a solid Ag nanosphere into the center of Ag nanoshell. We find that the linewidth of dipolar cavity plasmon resonance or hybrid mode induced FR is as narrow as 6.8 nm (corresponding to a high Q-factor of ~160 and a long dephasing time of ~200 fs) due to the highly localized feature of the electric-fields. In addition, we attribute the formation mechanisms of typical asymmetrical Fano line profiles in the extinction spectra to the constructive (Fano peak) and the destructive interferences (Fano dip) arising from the symmetric and asymmetric charge distributions between the dipolar sphere and cavity plasmon or hybrid modes. Interestingly, by simply adjusting the structural parameters, the dielectric refractive index required for the strongest FR in the Ag nanomatryushka can be reduced to be as small as 1.4, which largely reduces the restriction on materials, and the positions of FR can also be easily tuned across a broad spectral range. The ultranarrow linewidth, highly tunability together with the huge enhancement of electric fields at the FR may find important applications in sensing, slow light, and plasmon rulers.


2021 ◽  
Author(s):  
Wei Li ◽  
Renming Liu ◽  
Junyu Li ◽  
Jie Zhong ◽  
Huanjun Chen ◽  
...  

Abstract Single-exciton strong coupling with plasmons is highly desirable for exploiting room-temperature quantum devices and applications. However, the large plasmon decay makes the realization of such strong coupling extremely difficult. To overcome this challenge, here we propose an effective approach to easily achieve the single-exciton strong coupling at room temperature by controlling quantum exceptional point (QEP) of the coupling system via matching the decay between the localized plasmon mode (LPM) and exciton. The good match can be reached by suppressing the LPM’s decay with the use of a leaky Fabry-Perot cavity. Experimental results show that the LPM’s decay linewidth is greatly compressed from ~ 45 nm to ~ 15 nm, which is close to the excitonic linewidth (~ 10 nm), pushing their interaction from the Fano interference into the strong coupling. Our work opens a new way to flexibly control the QEP and more easily realize the single-exciton strong coupling in ambient conditions.


Nanomaterials ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 171 ◽  
Author(s):  
Chaode Lao ◽  
Yaoyao Liang ◽  
Xianjun Wang ◽  
Haihua Fan ◽  
Faqiang Wang ◽  
...  

In this paper, a novel method to realize a dynamically tunable analogue of EIT for the resonance strength rather than the resonance frequency is proposed in the terahertz spectrum. The introduced method is composed of a metal EIT-like structure, in which a distinct EIT phenomenon resulting from the near field coupling between bright and dark mode resonators can be obtained, as well as an integrated monolayer graphene ribbon under the dark mode resonator that can continuously adjust the resonance strength of transparency peak by changing the Fermi level of the graphene. Comparing structures that need to be modulated individually for each unit cell of the metamaterials, the proposed modulation mechanism was convenient for achieving synchronous operations for all unit cells. This work demonstrates a new platform of modulating the EIT analogue and paves the way to design terahertz functional devices which meet the needs of optical networks and terahertz communications.


2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Jie Hu ◽  
Tingting Lang ◽  
Weihang Xu ◽  
Jianjun Liu ◽  
Zhi Hong

AbstractWe propose a conductively coupled terahertz metallic metamaterial exhibiting analog of electromagnetically induced transparency (EIT), in which the bright and dark mode antennae interact via surface currents rather than near-field coupling. Aluminum foil, which is very cheap and often used in food package, is used to fabricate our metamaterials. Thus, our metamaterials are also flexible metamaterials. In our design, aluminum bar resonators and aluminum split ring resonators (SRRs) are connected (rather than separated) in the form of a fork-shaped structure. We conduct a numerical simulation and an experiment to analyze the mechanism of the proposed metamaterial. The surface current due to LSP resonance (bright mode) flows along different paths, and a potential difference is generated at the split gaps of the SRRs. Thus, an LC resonance (dark mode) is induced, and the bright mode is suppressed, resulting in EIT. The EIT-like phenomenon exhibited by the metamaterial is induced by surface conducting currents, which may provide new ideas for the design of EIT metamaterials. Moreover, the process of fabricating microstructures on flexible substrates can provide a reference for producing flexible microstructures in the future.


Sign in / Sign up

Export Citation Format

Share Document