plasmon energy
Recently Published Documents


TOTAL DOCUMENTS

145
(FIVE YEARS 28)

H-INDEX

17
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Santosh Routu ◽  
Jagan Mohana Rao Malla ◽  
Suresh Yathirajula ◽  
Nageswar rao Uppala

Abstract The structural, electronic, and optical properties of hydrogenated silicene have been investigated using first-principles DFT calculations. In comparison to pristine silicene, the hydrogenated silicene exhibits high stability, reduced anisotropy, and less birefringence. In the visible range, hydrogenated silicene exhibits a constant refractive index than silicene. The elastic and optical parameters: Young’s modulus (Y), poisson’s ratio (ν), bulk modulus (B), shear modulus (G), dielectric constant ε(0), refractive index n(0), conductivity threshold (Eth), birefringence Δn(0), and plasmon energy (ħωp) were calculated for the first time for various hydrogen occupancy levels. The estimated parameters are agree well with the experimental and reported values that are available.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Abel Mukubwa ◽  
John Wanjala Makokha

A Bose-Einstein condensate (BEC) of a nonzero momentum Cooper pair constitutes a composite boson or simply a boson. We demonstrated that the quantum coherence of the two-component BEC (boson and fermion condensates) is controlled by plasmons. It has been proposed that plasmons, observed in both electron-doped and hole-doped cuprates, originates from the long-range Coulomb screening, where the transfer momentum q ⟶ 0 . We further show that the screening mediates boson-fermion pairing at condensate state. While only about 1 % of plasmon energy mediates the charge pairing, most of the plasmon energy is used to overcome the modes that compete against superconductivity such as phonons, charge density waves, antiferromagnetism, and damping effects. Additionally, the dependence of frequency of plasmons on the material of a superconductor is also explored. This study gives a quantum explanation of the modes that enhance and those that inhibit superconductivity. The study informs the nature of electromagnetic radiations (EMR) that can enhance the critical temperature of such materials.


Chemosensors ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 272
Author(s):  
Maria Grazia Manera ◽  
Gabriele Giancane ◽  
Simona Bettini ◽  
Ludovico Valli ◽  
Victor Borovkov ◽  
...  

Optical and magneto-optical surface plasmon resonance (MOSPR) characterization and preliminary sensing test onto single- and multi-layers of two organic macrocycles have been performed; TbPc2(OC11H21)8 phthalocyanine and CoCoPo2 porphyrin were deposited by the Langmuir-Schäfer (LS) technique onto proper Au/Co/Au magneto-optical transducers. Investigations of the MOSPR properties in Kretschmann configuration by angular modulation, gives us an indication about the potential discrimination of two organic macrocycles with absorption electronic transition in and out of the propagating plasmon energy spectral range. An improved molecular vapors sensitivity increase by the MOSPR sensing probe can be demonstrated depending on the overlap between the plasmonic probe energy and the absorption electronic transitions of the macrocycles under investigation. If the interaction between the plasmon energy and molecular HOMO-LUMO transition is preserved, a variation in the complex refractive index takes place. Under this condition, the magneto-plasmonic effect reported as 1/|MOSPR| signal allows us to increase the detection of molecules deposited onto the plasmonic transducer and their gas sensing capacity. The detection mechanism appears strongly enhanced if the Plasmon Wave/HOMO-LUMO transitions energy are in resonance. Under coupling conditions, a different volatile organic compounds (VOC) sensing capability has been demonstrated using n-butylamine as the trial molecule.


ACS Nano ◽  
2021 ◽  
Author(s):  
Shasha Li ◽  
He Huang ◽  
Lei Shao ◽  
Jianfang Wang
Keyword(s):  

2021 ◽  
Author(s):  
V Kumar ◽  
R Santosh

Abstract The structural, electronic, and optical properties of hydrogenated silicene have been studied under different hydrostatic pressures using first-principle calculations. The binding energy and band structure have been calculated for Chair (C-) and Boat (B-) structures, which are having good stability at 0 GPa, 3 GPa, 6 GPa, 9 GPa, 12 GPa, 15 GPa, and 18 GPa hydrostatic pressures. Stability has been verified using binding energy and phonon calculations. The C- and B- structures have become metallic and unstable at 21 GPa. The optical properties of B-configuration have been studied in the energy range of 0-20 eV. Five optical parameters such as conductivity threshold (σth), dielectric constant ε(0), refractive index n(0), birefringence Δn(0) and plasmon energy (ħωp) have been calculated for the first time under different hydrostatic pressures. The calculated values are in good agreement with the reported values at 0 GPa.


2021 ◽  
pp. 152978
Author(s):  
Sang-Yeob Lim ◽  
SungSoo Kim ◽  
Jucheol Park ◽  
Gyeong-Geun Lee ◽  
Kunok Chang

2021 ◽  
Vol 223 ◽  
pp. 113220
Author(s):  
Maximilian Grove ◽  
Martin Peterlechner ◽  
Harald Rösner ◽  
Robert Imlau ◽  
Alessio Zaccone ◽  
...  

2021 ◽  
Author(s):  
V Kumar ◽  
R Santosh ◽  
Anita Sinha ◽  
J Kumar

Abstract The structural, electronic, and optical properties of hydrofluorinated germanene have been studied with different occupancy ratios of fluorine and hydrogen. The hybridization of H-1s and Ge-4p orbitals in hydrogenated germanene and F-2p and Ge-4p orbitals in fluorinated germanene plays a significant role in creating an energy bandgap. The binding energy and phonon calculations confirm the stability of hydrofluorinated germanene decreases with the increase of the F to H ratio. The value of the energy bandgap decreased by increasing the ratio of F and H. The optical properties have been studied in the energy range of 0-25 eV. Six essential parameters such as energy bandgap (Eg), binding energy (Eb), dielectric constant ε(0), refractive index n(0), plasmon energy (ћωp), and heat capacity (Cp) have been calculated for different occupancies of H and F in hydrofluorinated germanene for the first time. The calculated values of structural parameters agree well with the available experimental and reported values.


2021 ◽  
Vol 129 (5) ◽  
pp. 619
Author(s):  
Н.П. Степанов ◽  
А.А. Калашников

The regularities of the temperature behavior of the reflection spectra of the Bi0.8Sb1.2Te3 crystal obtained in the range of the plasma resonance of free charge carriers and the fundamental absorption edge allow us to trace the changes in the plasmon energy Ep and the optical band gap Eg opt. The observed decrease in Eg opt with increasing temperature corresponds to the existing ideas about the redistribution of holes between the nonequivalent extremes of the valence band in (Bi2-xSbx)Te3 (0<x<1) crystals. The dominance of this process in a certain temperature range contributes to the change in plasma frequencies. Keywords: reflection spectra, plasma oscillations, electron-plasmon interaction, dielectric functions.


Sign in / Sign up

Export Citation Format

Share Document