scholarly journals Polarization-independent anapole response of a trimer-based dielectric metasurface

Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Vladimir R. Tuz ◽  
Andrey B. Evlyukhin

Abstract The phenomenon of anapole has attracted considerable attention in the field of metamaterials as a possible realization of radiationless objects. We comprehensively study this phenomenon in the cluster-based systems of dielectric particles by considering conditions of anapole manifestation in both single trimers of disk-shaped particles and metamaterial composed on such trimers. Our analytical approach is based on the multipole decomposition method and the secondary multipole decomposition technique. They allow us to associate the anapole with the multipole moments of the trimer and the separate multipole moments of its constitutive particles. The manifestation of anapole in a two-dimensional metamaterial (metasurface) is confirmed by checking the resonant states in the reflected field as well as from the electromagnetic near-field patterns obtained from the full-wave numerical simulation. It is demonstrated that the anapole excitation in trimers results in the polarization-independent suppression of reflection with the resonant enhancement of local electromagnetic fields in the metasurface. Finally, experimental verification of the theoretical results is presented and discussed.

2021 ◽  
Vol 8 ◽  
Author(s):  
Jiaqi Han ◽  
Long Li ◽  
Shuncheng Tian ◽  
Xiangjin Ma ◽  
Qiang Feng ◽  
...  

This article presents a holographic metasurface antenna with stochastically distributed surface impedance, which produces randomly frequency-diverse radiation patterns. Low mutual coherence electric field patterns generated by the holographic metasurface antenna can cover the K-band from 18 to 26 GHz with 0.1 GHz intervals. By utilizing the frequency-diverse holographic metasurface (FDHM) antenna, we build a near-field microwave computational imaging system based on reflected signals in the frequency domain. A standard horn antenna is adopted to acquire frequency domain signals radiated from the proposed FDHM antenna. A detail imaging restoration process is presented, and the desired targets are correctly reconstructed using the 81 frequency-diverse patterns through full-wave simulation studies. Compressed sensing technique and iterative shrinkage/thresholding algorithms are applied for the imaging reconstruction. The achieved compressive ratio of this computational imaging system on the physical layer is 30:1.


2021 ◽  
Vol 118 (13) ◽  
pp. 131105
Author(s):  
Oshri Rabinovich ◽  
Ariel Epstein
Keyword(s):  

2015 ◽  
Vol 7 (3-4) ◽  
pp. 369-377 ◽  
Author(s):  
Alex Pacini ◽  
Alessandra Costanzo ◽  
Diego Masotti

An increasing interest is arising in developing miniaturized antennas in the microwave range. However, even when the adopted antennas dimensions are small compared with the wavelength, radiation performances have to be preserved to keep the system-operating conditions. For this purpose, magneto-dielectric materials are currently exploited as promising substrates, which allows us to reduce antenna dimensions by exploiting both relative permittivity and permeability. In this paper, we address generic antennas in resonant conditions and we develop a general theoretical approach, not based on simplified equivalent models, to establish topologies most suitable for exploiting high permeability and/or high-permittivity substrates, for miniaturization purposes. A novel definition of the region pertaining to the antenna near-field and of the associated field strength is proposed. It is then showed that radiation efficiency and bandwidth can be preserved only by a selected combinations of antenna topologies and substrate characteristics. Indeed, by the proposed independent approach, we confirm that non-dispersive magneto-dielectric materials with relative permeability greater than unit, can be efficiently adopted only by antennas that are mainly represented by equivalent magnetic sources. Conversely, if equivalent electric sources are involved, the antenna performances are significantly degraded. The theoretical results are validated by full-wave numerical simulations of reference topologies.


2008 ◽  
Vol 40 (3) ◽  
pp. 245-250
Author(s):  
G. Isic ◽  
A. Beltaos ◽  
R. Gajic ◽  
K. Hingerl

Cloaking devices based on the coordinate transform approach enable, in principle, a perfect concealment of a region in space provided that the material composing the cloaking shell meets certain criteria. To achieve ideal cloaking it is necessary that the shell material parameters have singular values on the surface bounding the cloaked region which is unphysical. In this paper we assume finite values of cloak parameters and apply the scattering theory formalism to give an estimate of the overall performance of an 'imperfect' cloak. We perform full-wave numerical calculations and use our theoretical results to discuss them.


2017 ◽  
Vol 50 (3) ◽  
pp. 701-711 ◽  
Author(s):  
Qi Zhong ◽  
Lars Melchior ◽  
Jichang Peng ◽  
Qiushi Huang ◽  
Zhanshan Wang ◽  
...  

Iterative phase retrieval has been used to reconstruct the near-field distribution behind tailored X-ray waveguide arrays, by inversion of the measured far-field pattern recorded under fully coherent conditions. It is thereby shown that multi-waveguide interference can be exploited to control the near-field distribution behind the waveguide exit. This can, for example, serve to create a secondary quasi-focal spot outside the waveguide structure. For this proof of concept, an array of seven planar Ni/C waveguides are used, with precisely varied guiding layer thickness and cladding layer thickness, as fabricated by high-precision magnetron sputtering systems. The controlled thickness variations in the range of 0.2 nm results in a desired phase shift of the different waveguide beams. Two kinds of samples, a one-dimensional waveguide array and periodic waveguide multilayers, were fabricated, each consisting of seven C layers as guiding layers and eight Ni layers as cladding layers. These are shown to yield distinctly different near-field patterns.


RSC Advances ◽  
2018 ◽  
Vol 8 (40) ◽  
pp. 22286-22292
Author(s):  
Anqi Yu

Enhancing the localized electric field of graphene plasmons with a metallic split-mesh structure by more than an order of magnitude.


Sign in / Sign up

Export Citation Format

Share Document