scholarly journals Semi- analytic numerical method for solution of time-space fractional heat and wave type equations with variable coefficients

Open Physics ◽  
2017 ◽  
Vol 15 (1) ◽  
pp. 74-86 ◽  
Author(s):  
Rishi Kumar Pandey ◽  
Hradyesh Kumar Mishra

AbstractThe time and space fractional wave and heat type equations with variable coefficients are considered, and the variable order derivative in He‘s fractional derivative sense are taken. The utility of the homotopy analysis fractional sumudu transform method is shown in the form of a series solution for these generalized fractional order equations. Some discussion with examples are presented to explain the accuracy and ease of the method.

2017 ◽  
Vol 6 (1) ◽  
pp. 30
Author(s):  
Mohammed Al Masalmeh

This paper investigates and states some properties of conformable fractional derivative, Further Study and applies the series solution for a case of conformable fractional Riccati deferential equation with variable coefficients “which is arising in stochastic games” or “hyperbolic boundary control." Recently, Prof. Roshdi Khalil introduced a new and interesting definition for the C F D, which is simpler than the previous definition in Caputo and Riemann-Liouville. It leads to many extensions of the classical theorems in calculus.


Author(s):  
M. Hosseininia ◽  
M. H. Heydari ◽  
Z. Avazzadeh ◽  
F. M. Maalek Ghaini

AbstractThis article studies a numerical scheme for solving two-dimensional variable-order time fractional nonlinear advection-diffusion equation with variable coefficients, where the variable-order fractional derivative is in the Caputo type. The main idea is expanding the solution in terms of the 2D Legendre wavelets (2D LWs) where the variable-order time fractional derivative is discretized. We describe the method using the matrix operators and then implement it for solving various types of fractional advection-diffusion equations. The experimental results show the computational efficiency of the new approach.


Open Physics ◽  
2016 ◽  
Vol 14 (1) ◽  
pp. 106-113 ◽  
Author(s):  
Badr Saad T. Alkahtani ◽  
Abdon Atangana

AbstractA new approach for modeling real world problems called the “Eton Approach” was presented in this paper. The "Eton approach" combines both the concept of the variable order derivative together with Atangana derivative with memory derivative. The Atangana derivative with memory is used to account for the memory and fractional derivative for its filter effect. The approach was used to describe the potential energy field that is caused by a given charge or mass density distribution.We solve the modified model numerically and present supporting numerical simulations.


2014 ◽  
Vol 2014 ◽  
pp. 1-4 ◽  
Author(s):  
Dianchen Lu ◽  
Jie Liu

The homotopy analysis method is applied to solve the variable coefficient KdV-Burgers equation. With the aid of generalized elliptic method and Fourier’s transform method, the approximate solutions of double periodic form are obtained. These solutions may be degenerated into the approximate solutions of hyperbolic function form and the approximate solutions of trigonometric function form in the limit cases. The results indicate that this method is efficient for the nonlinear models with the dissipative terms and variable coefficients.


2021 ◽  
Vol 9 ◽  
Author(s):  
Ahmad El-Ajou ◽  
Zeyad Al-Zhour

In this paper, we introduce a series solution to a class of hyperbolic system of time-fractional partial differential equations with variable coefficients. The fractional derivative has been considered by the concept of Caputo. Two expansions of matrix functions are proposed and used to create series solutions for the target problem. The first one is a fractional Laurent series, and the second is a fractional power series. A new approach, via the residual power series method and the Laplace transform, is also used to find the coefficients of the series solution. In order to test our proposed method, we discuss four interesting and important applications. Numerical results are given to authenticate the efficiency and accuracy of our method and to test the validity of our obtained results. Moreover, solution surface graphs are plotted to illustrate the effect of fractional derivative arrangement on the behavior of the solution.


2017 ◽  
Vol 2017 ◽  
pp. 1-19 ◽  
Author(s):  
Jin Zhang ◽  
Ming Cai ◽  
Bochao Chen ◽  
Hui Wei

We apply the homotopy perturbation Sumudu transform method (HPSTM) to the time-space fractional coupled systems in the sense of Riemann-Liouville fractional integral and Caputo derivative. The HPSTM is a combination of Sumudu transform and homotopy perturbation method, which can be easily handled with nonlinear coupled system. We apply the method to the coupled Burgers system, the coupled KdV system, the generalized Hirota-Satsuma coupled KdV system, the coupled WBK system, and the coupled shallow water system. The simplicity and validity of the method can be shown by the applications and the numerical results.


2020 ◽  
Vol 26 (1) ◽  
pp. 35-55
Author(s):  
Abdelkader Kehaili ◽  
Ali Hakem ◽  
Abdelkader Benali

In this paper, we present the exact solutions of the Parabolic-like equations and Hyperbolic-like equations with variable coefficients, by using Homotopy perturbation transform method (HPTM). Finally, we extend the results to the time-fractional differential equations. Keywords: Caputo’s fractional derivative, fractional differential equations, homotopy perturbation transform method, hyperbolic-like equation, Laplace transform, parabolic-like equation.


Fractals ◽  
2021 ◽  
pp. 2240009
Author(s):  
WEI GAO ◽  
P. VEERESHA ◽  
D. G. PRAKASHA ◽  
HACI MEHMET BASKONUS

The main purpose of the present investigation is to find the solution of fractional coupled equations describing the romantic relationships using [Formula: see text]-homotopy analysis transform method ([Formula: see text]-HATM). The considered scheme is a unification of [Formula: see text]-homotopy analysis technique with Laplace transform (LT). More preciously, we scrutinized the behavior of the obtained solution for the considered model with fractional-order, in order to elucidate the effectiveness of the proposed algorithm. Further, for the different fractional-order and parameters offered by the considered method, the physical natures have been apprehended. The obtained consequences evidence that the proposed method is very effective and highly methodical to study and examine the nature and its corresponding consequences of the system of fractional order differential equations describing the real word problems.


Sign in / Sign up

Export Citation Format

Share Document