scholarly journals Shooting method analysis in wire coating withdrawing from a bath of Oldroyd 8-constant fluid with temperature dependent viscosity

Open Physics ◽  
2018 ◽  
Vol 16 (1) ◽  
pp. 956-966 ◽  
Author(s):  
Zeeshan Khan ◽  
Haroon Ur Rasheed ◽  
Murad Ullah ◽  
Ilyas Khan ◽  
Tawfeeq Abdullah Alkanhal ◽  
...  

Abstract The most important plastic resins used in wire coating are high/low density polyethylene (LDPE/HDPE), plasticized polyvinyl chloride (PVC), nylon and polysulfone. To provide insulation and mechanical strength, coating is necessary for wires. Simulation of polymer flow during wire coating dragged froma bath of Oldroyd 8-constant fluid incompresible and laminar fluid inside pressure type die is carried out numerically. In wire coating the flow depends on the velocity of the wire, geometry of the die and viscosity of the fluid.The non-dimensional resulting flow and heat transfer differential equations are solved numerically by Ruge-Kutta 4th-order method with shooting technique. Reynolds model and Vogel’s models are encountered for temperature dependent viscosity. The numerical solutions are obtained for velocity field and temperature distribution. The solutions are computed for different physical parameters.It is observed that the non-Newtonian propertis of fluid were favourable, enhancing the velocity in combination with temperature dependent variable. The Brinkman number contributes to increase the temperature for both Reynolds and Vogel’smodels. With the increasing of pressure gradient parameter of both Reynolds and Vogel’s models, the velocity and temperature profile increases significantly in the presence of non-Newtonian parameter. Furthermore, the present result is also compared with published results as a particular case.

1969 ◽  
Vol 36 (2) ◽  
pp. 239-258 ◽  
Author(s):  
S. F. Liang ◽  
A. Vidal ◽  
Andreas Acrivos

Numerical solutions to the Boussinesq equations containing a temperature-dependent viscosity are presented for the case of axisymmetric buoyancy-driven convective flow in a cylindrical cell. Two solutions, one with upflow and the other with downflow at the centre of the cell, were found for each set of boundary conditions that were considered. The existence of these two steady-state régimes was verified experimentally for the case of a cylindrical cell having rigid insulating lateral boundaries and isothermal top and bottom planes.Using a perturbation expansion it is also shown that only one of these solutions remains stable in the subcritical régime. This, however, seems to be confined to a very narrow range of Rayleigh numbers, beyond which, according to all the evidence presently at hand, both solutions are equally stable for those values of the Rayleigh and Prandtl numbers for which axisymmetric motions occur.Finally, certain fundamental differences between the problem considered here and that of thermal convection in a layer of infinite horizontal extent are briefly discussed.


1998 ◽  
Vol 120 (3) ◽  
pp. 600-605 ◽  
Author(s):  
T. M. Harms ◽  
M. A. Jog ◽  
R. M. Manglik

Fully developed laminar flows in a semicircular duct with temperature-dependent viscosity variations in the flow cross section are analyzed, where the viscosity-temperature behavior is described by the Arrhenius model. Both the T and H1 boundary conditions are considered, as they represent the most fundamental heating/cooling conditions encountered in practical compact heat exchanger applications. Numerical solutions for the flow velocity and the temperature fields have been obtained by finite difference technique. The friction factor and Nusselt number results display a strong dependence on the viscosity ratio (μw/μb), and this is correlated using the classical power-law relationship. However, results indicate that the power-law exponents are significantly different from traditional values for circular tube. They are found to be functions of the flow geometry, boundary condition, and direction of heat transfer (heating or cooling).


2021 ◽  
Author(s):  
Zeeshan Khan ◽  
Prof. Dr. Ilyas Khan

Abstract The convective heat and mass propagation inside dies are used to determine the characteristics of coated wire products. As a result, comprehending the properties of polymerization mobility, heat mass transport, and wall stress concentration is crucial. The wire coating procedure necessitates an increase in thermal performance. As a result, this research aims to determine how floating nanoparticles affect the mass and heat transport mechanisms of third-grade fluid in the posttreatment for cable coating processes. For nanofluids, the Buongiorno model is used, including variable viscosity. The model equations are developed using continuity, momentum, energy, and nanoparticle volume fraction concentration. We propose a few nondimensional transformations that are relevant. The numerical technique Runge-Kutta fourth method is used to generate numerical solutions for nonlinear systems. Pictorial depictions are used to observe the influence of various factors in the nondimensional flow, radiative, and nanoparticle concentration fields. Furthermore, the numerical results are also verified analytically using Homotopy Analysis Method (HAM). The analytical findings of this investigation revealed that within the Reynolds modeling, the stress on the whole wire surface combined with shear forces at the surface predominates Vogel's model. The contribution of nanomaterials upon force on the entire surface of wire and shear forces at the surface appears positive. A non-Newtonian feature can increase the capping substance's velocity. This research could aid in the advancement of wire coating technologies.For the first instance, the significance of nanotechnology during wire coating evaluation is explored utilizing Brownian motion with generation/absorption slip processes. For time-dependent viscosity, two alternative models are useful.


Sign in / Sign up

Export Citation Format

Share Document