scholarly journals A DFT study on the molecular properties of synthetic ester under the electric field

Open Physics ◽  
2021 ◽  
Vol 19 (1) ◽  
pp. 647-656
Author(s):  
Yachao Wang ◽  
Xiaoran Lin ◽  
Mei Wang ◽  
Jifang Wang

Abstract Synthetic ester can replace the mineral oil traditionally used in transformers to avoid the environmental problems caused by oil leakage. However, the fast discharge phenomenon in a high electric field in transformers using synthetic ester seems to indicate its insulation property is inferior to that of mineral oil. In this paper, typical molecular models of synthetic ester, including F2, F4, F6, F8, and F10, are constructed. We studied the effect of electric fields on the molecular properties of the five molecules by density functional theory and time-dependent density functional theory. According to the electric field intensity required for discharge initiation and propagation in insulating oil, the electric field intensity applied in this study varied from 108 to 109 V/m. The results showed that the molecular bond lengths are obviously dependent on the electric field. The ionization potential (IP) of the F8 and F10 molecules decreases sharply under electric field intensities of 3.1 × 109 and 4.0 × 109 V/m. It can be inferred that the IP reduction of the long carbon chain molecules, such as F8 and F10, is the reason for the formation of fast discharge in the case of synthesis ester. Calculations for excited states show that the introduction of an electric field makes the electron transition more active. The results obtained by this work improve our understanding of the discharge mechanism in synthetic ester dielectrics and provide theoretical support for improvement in the performance of synthetic ester insulating oil.

2020 ◽  
Vol 213 ◽  
pp. 01028
Author(s):  
Tingting Yang ◽  
Pingbo Li ◽  
Chuang Fu ◽  
Qi Zhou ◽  
Xueqiang Qi

Density functional theory (DFT) calculations for the methanol oxidation reaction (MOR) has attracted much more attention than ever before, since the mechanism of methanol dehydrogenation is very important in direct methanol fuel cell (DMFC). Herein, methanol adsorption on Pd(111) with different electric field intensity (0.000, 0.0010, 0.0025 and 0.0050 au) were studied with DFT calculations. The results showed that methanol may adsorb on the Pd(1 1 1) either through the methyl or the hydroxyl of methanol in the absence electric field, since the two adsorption configurations share the similar adsorption energy. However, along with the increase of the electric field intensity, the angles formed by C-O bond axis and Pd(1 1 1) became gradually smaller, and it is only 1.9° when the electric field intensity value is 0.0050 au for the methyl case; while it kept at 35±5° for the hydroxyl case. The methanol molecule was not activated in the reported electric field.


2019 ◽  
Vol 22 (7) ◽  
pp. 470-482
Author(s):  
Samereh Ghazanfary ◽  
Fatemeh Oroojalian ◽  
Rezvan Yazdian-Robati ◽  
Mehdi Dadmehr ◽  
Amirhossein Sahebkar

Background: Boron Nitride Nanotubes (BNNTs) have recently emerged as an interesting field of study, because they could be used for the realization of developed, integrated and compact nanostructures to be formulated. BNNTs with similar surface morphology, alternating B and N atoms completely substitute for C atoms in a graphitic-like sheet with nearly no alterations in atomic spacing, with uniformity in dispersion in the solution, and readily applicable in biomedical applications with no obvious toxicity. Also demonstrating a good cell interaction and cell targeting. Aim and Objective: With a purpose of increasing the field of BNNT for drug delivery, a theoretical investigation of the interaction of Melatonin, Vitamin C, Glutathione and lipoic acid antioxidants using (9, 0) zigzag BNNTs is shown using density functional theory. Methods: The geometries corresponding to Melatonin, Vitamin C, Glutathione and lipoic acid and BNNT with different lengths were individually optimized with the DMOL3 program at the LDA/ DNP (fine) level of theory. Results: In the presence of external electric field Melatonin, Vitamin C, Glutathione and lipoic acid could be absorbed considerably on BNNT with lengths 22 and 29 Å, as the adsorption energy values in the presence of external electric field are considerably increased. Conclusion: The external electric field is an appropriate technique for adsorbing and storing antioxidants on BNNTs. Moreover, it is believed that applying the external electric field may be a proper method for controlling release rate of drugs.


2020 ◽  
Vol 22 (42) ◽  
pp. 24471-24479 ◽  
Author(s):  
Asadollah Bafekry ◽  
Catherine Stampfl ◽  
Chuong Nguyen ◽  
Mitra Ghergherehchi ◽  
Bohayra Mortazavi

Density functional theory calculations are performed in order to study the structural and electronic properties of monolayer Pt2HgSe3. Effects of uniaxial and biaxial strain, layer thickness, electric field and out-of-plane pressure on the electronic properties are systematically investigated.


2020 ◽  
Vol 11 (8) ◽  
pp. 2231-2242 ◽  
Author(s):  
Croix J. Laconsay ◽  
Ka Yi Tsui ◽  
Dean J. Tantillo

We interrogate a type of heterolytic fragmentation called a ‘divergent fragmentation’ using density functional theory (DFT), natural bond orbital (NBO) analysis, ab initio molecular dynamics (AIMD), and external electric field (EEF) calculations.


Sign in / Sign up

Export Citation Format

Share Document