Investigating the in-plane mechanical behavior of single-ply quasi-unidirectional glass fiber/polypropylene composites

2017 ◽  
Vol 37 (4) ◽  
pp. 401-409 ◽  
Author(s):  
Zhanyu Zhai ◽  
Christian Gröschel ◽  
Dietmar Drummer

Abstract The objective of this study was to determine the engineering constants and off-axis tensile stress-strain relation of single-ply quasi-unidirectional (UD) glass fiber (GF)/polypropylene (PP) composites using the new approach. A series of off-axis tensile tests of quasi-UD composites were carried out. In this study, Puck’s interfiber fracture criterion was expanded for the first time to estimate the off-axis tensile stresses of UD composites. With the experimental values, the shear properties were obtained through the curve-fitting methods. Damage mechanisms were demonstrated to evolve with the loading angle. By comparison to experimental data, the Hahn-Tsai equation, together with the transformation equation, was found to be adequate to describe the off-axis tensile stress-strain relation of single-ply quasi-UD GF/PP composites.

1957 ◽  
Vol 24 (4) ◽  
pp. 585-593
Author(s):  
J. Duffy ◽  
R. D. Mindlin

Abstract A differential stress-strain relation is derived for a medium composed of a face-centered cubic array of elastic spheres in contact. The stress-strain relation is based on the theory of elastic bodies in contact, and includes the effects of both normal and tangential components of contact forces. A description is given of an experiment performed as a test of the contact theories and the differential stress-strain relation derived from them. The experiment consists of a determination of wave velocities and the accompanying rates of energy dissipation in granular bars composed of face-centered cubic arrays of spheres. Experimental results indicate a close agreement between the theoretical and experimental values of wave velocity. However, as in previous experiments with single contacts, the rate of energy dissipation is found to be proportional to the square of the maximum tangential contact force rather than to the cube, as predicted by the theory for small amplitudes.


Author(s):  
Michael Zak

Discrepancy between reported in the literature tensile stress-strain relations for concrete is addressed. A conclusion is reached that in the post-peak (softening) range of deformation the stress-strain relation is not unique and depends on the gradient of stress. A simplified variant of such a relation, intended for analysis of concrete beams with regard to the effect of size (the depth of section), is proposed.


2011 ◽  
Vol 86 (6-8) ◽  
pp. 1462-1465 ◽  
Author(s):  
E. Briani ◽  
C. Gianini ◽  
F. Lucca ◽  
A. Marin ◽  
J. Fellinger ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3626
Author(s):  
Łukasz Hojdys ◽  
Piotr Krajewski

This paper presents the results of direct tensile tests performed on six different FRCM (fabric reinforced cementitious matrix) strengthening systems used for masonry structures. The emphasis was placed on the determination of the mechanical parameters of each tested system and a comparison of their tensile behaviour in terms of first crack stress, ultimate stress, ultimate strain, cracking pattern, failure mode and idealised tensile stress-strain curve. In addition to the basic mechanical tensile parameters, accidental load eccentricities, matrix tensile strengths, and matrix modules of elasticity were estimated. The results of the tests showed that the tensile behaviour of FRCM composites strongly depends on the parameters of the constituent materials (matrix and fabric). In the tests, tensile failure of reinforcement and fibre slippage within the matrix were observed. The presented research showed that the accidental eccentricities did not substantially affect the obtained results and that the more slender the specimen used, the more consistent the obtained results. The analysis based on a rule of mixtures showed that the direct tensile to flexural tensile strength ratio of the matrixes used in the test was 0.2 to 0.4. Finally, the tensile stress–strain relationship for the tested FRCMs was idealised by a bi- or tri-linear curve.


Author(s):  
Kristian Krabbenhoft ◽  
J. Wang

A new stress-strain relation capable of reproducing the entire stress-strain range of typical soil tests is presented. The new relation involves a total of five parameters, four of which can be inferred directly from typical test data. The fifth parameter is a fitting parameter with a relatively narrow range. The capabilities of the new relation is demonstrated by the application to various clay and sand data sets.


Sign in / Sign up

Export Citation Format

Share Document