scholarly journals Tensile Behaviour of FRCM Composites for Strengthening of Masonry Structures—An Experimental Investigation

Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3626
Author(s):  
Łukasz Hojdys ◽  
Piotr Krajewski

This paper presents the results of direct tensile tests performed on six different FRCM (fabric reinforced cementitious matrix) strengthening systems used for masonry structures. The emphasis was placed on the determination of the mechanical parameters of each tested system and a comparison of their tensile behaviour in terms of first crack stress, ultimate stress, ultimate strain, cracking pattern, failure mode and idealised tensile stress-strain curve. In addition to the basic mechanical tensile parameters, accidental load eccentricities, matrix tensile strengths, and matrix modules of elasticity were estimated. The results of the tests showed that the tensile behaviour of FRCM composites strongly depends on the parameters of the constituent materials (matrix and fabric). In the tests, tensile failure of reinforcement and fibre slippage within the matrix were observed. The presented research showed that the accidental eccentricities did not substantially affect the obtained results and that the more slender the specimen used, the more consistent the obtained results. The analysis based on a rule of mixtures showed that the direct tensile to flexural tensile strength ratio of the matrixes used in the test was 0.2 to 0.4. Finally, the tensile stress–strain relationship for the tested FRCMs was idealised by a bi- or tri-linear curve.

2020 ◽  
Vol 29 ◽  
pp. 2633366X2095872
Author(s):  
Yang Wei ◽  
Mengqian Zhou ◽  
Kunpeng Zhao ◽  
Kang Zhao ◽  
Guofen Li

Glulam bamboo has been preliminarily explored for use as a structural building material, and its stress–strain model under axial loading has a fundamental role in the analysis of bamboo components. To study the tension and compression behaviour of glulam bamboo, the bamboo scrimber and laminated bamboo as two kinds of typical glulam bamboo materials were tested under axial loading. Their mechanical behaviour and failure modes were investigated. The results showed that the bamboo scrimber and laminated bamboo have similar failure modes. For tensile failure, bamboo fibres were ruptured with sawtooth failure surfaces shown as brittle failure; for compression failure, the two modes of compression are buckling and compression shear failure. The stress–strain relationship curves of the bamboo scrimber and laminated bamboo are also similar. The tensile stress–strain curves showed a linear relationship, and the compressive stress–strain curves can be divided into three stages: elastic, elastoplastic and post-yield. Based on the test results, the stress–strain model was proposed for glulam bamboo, in which a linear equation was used to describe the tensile stress–strain relationship and the Richard–Abbott model was employed to model the compressive stress–strain relationship. A comparison with the experimental results shows that the predicted results are in good agreement with the experimental curves.


2017 ◽  
Vol 37 (4) ◽  
pp. 401-409 ◽  
Author(s):  
Zhanyu Zhai ◽  
Christian Gröschel ◽  
Dietmar Drummer

Abstract The objective of this study was to determine the engineering constants and off-axis tensile stress-strain relation of single-ply quasi-unidirectional (UD) glass fiber (GF)/polypropylene (PP) composites using the new approach. A series of off-axis tensile tests of quasi-UD composites were carried out. In this study, Puck’s interfiber fracture criterion was expanded for the first time to estimate the off-axis tensile stresses of UD composites. With the experimental values, the shear properties were obtained through the curve-fitting methods. Damage mechanisms were demonstrated to evolve with the loading angle. By comparison to experimental data, the Hahn-Tsai equation, together with the transformation equation, was found to be adequate to describe the off-axis tensile stress-strain relation of single-ply quasi-UD GF/PP composites.


2005 ◽  
Vol 297-300 ◽  
pp. 905-911 ◽  
Author(s):  
Xu Chen ◽  
Li Zhang ◽  
Masao Sakane ◽  
Haruo Nose

A series of tensile tests at constant strain rate were conducted on tin-lead based solders with different Sn content under wide ranges of temperatures and strain rates. It was shown that the stress-strain relationships had strong temperature- and strain rate- dependence. The parameters of Anand model for four solders were determined. The four solders were 60Sn-40Pb, 40Sn-60Pb, 10Sn-90Pb and 5Sn-95Pb. Anand constitutive model was employed to simulate the stress-strain behaviors of the solders for the temperature range from 313K to 398K and the strain rate range from 0.001%sP -1 P to 2%sP -1 P. The results showed that Anand model can adequately predict the rate- and temperature- related constitutive behaviors at all test temperatures and strain rates.


1975 ◽  
Vol 48 (5) ◽  
pp. 830-844 ◽  
Author(s):  
D. C. Blackley ◽  
M. W. Sheikh

Abstract This paper presents and discusses the mechanical properties of crosslinked poly (ethyl acrylates) containing various amounts of microscopic glass beads. The adhesion between the glass beads and the elastomer matrix was varied by subjecting the beads to different surface treatments. That the adhesion is affected by surface treatment has been demonstrated in two ways: (1) Unfilled elastomer sheets have been cast in contact with glass surfaces which had been treated with the same reagents as the beads. The force required to peel the elastomer from the glass was then measured and found to depend strongly upon the surface treatment. (2) Scanning electron micrographs of the ruptured surfaces of used tensile test pieces cut from filled elastomer sheets confirm that surface treatment has a profound effect upon the adhesion between bead and matrix. Results are presented for the hardness and tensile stress-strain properties of elastomers containing various amounts of beads. In all cases, the stiffening effect of the beads increases as the adhesion between beads and matrix is improved. Beads which had been treated in such a way as to minimize the adhesion to the matrix were found to cause an apparent softening of the material as revealed by the tensile stress-strain curve. It has been shown that this effect can be satisfactorily explained if it is assumed that in this case the beads merely serve to increase the void content of the material.


2007 ◽  
Vol 44 (2) ◽  
pp. 231-240 ◽  
Author(s):  
Srijib Chakrabarti ◽  
Jayantha Kodikara

Tensile behaviour plays a very significant role in the performance of cement-stabilized pavements under traffic, as well as under environmental loading. This paper reports the results of direct tensile strength tests undertaken using new equipment. The tests were performed on specimens of crushed basaltic rock stabilized with three binders, namely, general purpose Portland (GP) cement, general blended (GB) cement, and alkali activated slag (AAS), with application rates of 2%, 3%, and 4% by dry weight. Some tests were conducted by adding 6% and 15% highly plastic clay to crushed basaltic rock. The tests showed that while the tensile strength increased with curing time, the failure tensile strain decreased. The ratio of unconfined compressive strength to tensile strength decreased with curing time, but it stabilized within the range 8–12 after about 7 days of curing. For AAS and GB cement, the failure tensile strain decreased with curing time, stabilizing at about 50 microstrains after 7 days of curing, whereas for GP cement, the failure tensile strain did not change significantly during curing, displaying a value around 40 microstrains. The test results also indicated that the presence of reactive fine-grained soil may have had a significant adverse effect on the potential for cracking in the stabilized pavement materials.Key words: pavement materials, cement stabilization, tensile strength, cracking potential.


Sign in / Sign up

Export Citation Format

Share Document