Effects of gas-assisted extrusion on slip in the cable coating process

2021 ◽  
Vol 41 (4) ◽  
pp. 329-337
Author(s):  
Hongna Yin ◽  
Xingyuan Huang ◽  
Tongke Liu ◽  
Minjie Song

Abstract The isothermal viscoelastic finite element method is used to simulate and analyze the process of cable coating extrusion, in which the Navier slip model is adopted. The Phan–Thien–Tanner differential viscoelastic constitutive equation is used to describe the flow characteristics of the polymer melt. The polymer material used for simulation is polypropylene. The extrudate swell, velocity field, pressure field and shear stress field are calculated by finite element method. The influences of the gas-assisted extrusion and traditional extrusion on wall slip of cable coating extrusion are compared. The results indicate that the extrudate swell ratio is the largest under the condition of the complete slip between core wire and melt during traditional extrusion process. The increase of core wire dragging velocity can lead to the increase of slip velocity, the decrease of pressure and the increase of shear stress of melt. Gas-assisted extrusion can eliminate the negative effects caused by the slip of core wire or the increase of core wire dragging velocity. Therefore, gas-assisted extrusion can reduce the energy consumption, improve the cable coating layer quality and increase the production efficiency during extrusion process.

2014 ◽  
Vol 941-944 ◽  
pp. 2332-2335 ◽  
Author(s):  
Min Zhang ◽  
Chuan Zhen Huang ◽  
Yu Xi Jia ◽  
Jin Long Liu

Considering the extrudate swell, the polymer extrusion process was calculated by the inversed simulation based on the visco-elastic ecology theory. The fluid characteristics of the polymer melt were described by the Phan-Thien and Tanner (PTT) model. The Finite Element Method was used. Based on the simulation data, the extrusion die lips were analyzed. So it is feasible to design the polymer extrusion die lips using inversed simulation method.


2012 ◽  
Vol 215-216 ◽  
pp. 1026-1032
Author(s):  
Suhas Ankalkhope ◽  
Nilesh Jadhav ◽  
Sunil Bhat

Stress solutions are reviewed for some typical cases of axisymmetric and non-axisymmetric loads over a structural member with the principles of elasticity. A curved bar is chosen for the analysis. Tangential, radial and shear stress are determined analytically using Airy’s stress function. The curved bar is also modelled by finite element method to obtain numerical values of stress. Analytical and numerical results are in excellent agreement with each other.


2009 ◽  
Vol 424 ◽  
pp. 113-119 ◽  
Author(s):  
Jerome Muehlhause ◽  
Sven Gall ◽  
Sören Müller

Extrusion of composite materials can offer big advantages. In this work the manufacturing of a hybrid metal profile in a single production step was investigated. A porthole die was used, thus producing profiles with extrusion seams. Along the seams a material mix up was visible. The extrusion process was simulated with the Finite Element Method to investigate the material flow in die and welding chamber in order to understand the cause for the defects at the seams.


Mechanika ◽  
2021 ◽  
Vol 27 (2) ◽  
pp. 175-181
Author(s):  
Jinjin ZHAI ◽  
Yuantao SUN ◽  
Qing ZHANG ◽  
Xianrong QIN

Metal bulk forming is widely used because of its own advantages. In order to improve the production efficiency and reduce the cost, numerical simulation is often used to analyze the volume forming process. Because of the large deformation and non-linearity of the forming process, the finite element method (FEM) has the problem of element distortion, which will affect the accuracy and even lead to the failure of the analysis process. In this paper, an adaptive finite element method (AFEM) is proposed to solve this problem. Firstly, the finite element model is established, and grids are roughly divided. After the analysis, according to the error calculation model, the area with large error is determined by the standard deviation of nominal strain energy of nodes. Then, the grids are refined by dichotomy method, and the calculation is continued, repeating this step until the error meets the requirement. Finally, the numerical analysis of the forging process of the bulge formed joint is taken as an example to prove the accuracy of the proposed method.  


Sign in / Sign up

Export Citation Format

Share Document