polymer extrusion
Recently Published Documents


TOTAL DOCUMENTS

173
(FIVE YEARS 25)

H-INDEX

21
(FIVE YEARS 3)

Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4068
Author(s):  
M. M. A. Spanjaards ◽  
G. W. M. Peters ◽  
M. A. Hulsen ◽  
P. D. Anderson

In this paper, an experimental strategy is presented to characterize the rheological behavior of filled, uncured rubber compounds. Oscillatory shear experiments on a regular plate-plate rheometer are combined with a phenomenological thixotropy model to obtain model parameters that can be used to describe the steady shear behavior. We compare rate- and stress-controlled kinetic equations for a structure parameter that determines the deformation history-dependent spectrum and, thus, the dynamic thixotropic behavior of the material. We keep the models as simple as possible and the characterization straightforward to maximize applicability. The model can be implemented in a finite element framework as a tool to simulate realistic rubber processing. This will be the topic of another work, currently under preparation. In shaping processes, such as rubber- and polymer extrusion, with realistic processing conditions, the range of shear rates is far outside the range obtained during rheological characterization. Based on some motivated choices, we will present an approach to extend this range.


Seikei-Kakou ◽  
2021 ◽  
Vol 33 (7) ◽  
pp. 222-226
Author(s):  
Eiji Takeda ◽  
Kazuhiro Takenaka
Keyword(s):  

Polymers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1924
Author(s):  
Amin Razeghiyadaki ◽  
Dongming Wei ◽  
Asma Perveen ◽  
Dichuan Zhang

In the polymer sheet processing industry, the primary objective when designing a coat-hanger die is to achieve a uniform velocity distribution at the exit of the extrusion die outlet. This velocity distribution depends on the internal flow channels of the die, rheological parameters and extrusion process conditions. As a result, coat-hanger dies are often designed for each polymer based on its individual rheological data and other conditions. A multi-rheology method based on a flow network model and the Winter–Fritz equation is proposed and implemented for the calculation, design and optimization of flat sheeting polymer extrusion dies. This method provides a fast and accurate algorithm to obtain die design geometries with constant wall-shear rates and optimal outlet velocity distributions. The geometric design when complemented and validated with fluid flow simulations could be applied for multi-rheological fluid models such as the power-law, Carreau–Yasuda and Cross. This method is applied to sheet dies with both circular- and rectangular-shaped manifolds for several rheological fluids. The designed geometrical parameters are obtained, and the associated fluid simulations are performed to demonstrate its favorable applicability without being limited to only the power-law rheology. The two such designed dies exhibit 32.9 and 21.5 percent improvement in flow uniformity compared to the previous methods for dies with circular and rectangular manifolds, respectively.


Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1547
Author(s):  
Andrzej Nastaj ◽  
Krzysztof Wilczyński

A review paper is presented on optimization and scale-up for polymer extrusion, both single screw and twin screw extrusion. Optimization consists in obtaining a multidimensional space of process output variables (response surface) on the basis of an appropriate set of input data and searching for extreme values in this space. Scaling consists in changing the scale of the process according to specific criteria, that is, changing the process while maintaining the scaling parameters at a level that is as close to the reference process parameters as possible. It consists in minimizing the differences between the parameters characterizing the reference process and the resulting process. This may be obtained by using optimization techniques leading to the minimization of discrepancies between the parameters of scaled processes. In the paper, it was stated that optimization and scale-up based on process simulation are more effective than those based on experimentation which is time consuming and expensive. The state-of-the-art on extrusion process modeling which is the basis of optimization and scale-up has been presented. Various optimization techniques have been discussed, and the Genetic Algorithms have been identified as powerful and very efficient. Optimization and scale-up based on the process simulation using Genetic Algorithms have been broadly reviewed and discussed. It was concluded that, up to date, there is a lack of optimization studies on the counter-rotating twin screw extrusion, although the global models of this process are known. There is also a lack of process simulation-based scaling-up studies, both on the counter-rotating twin screw extrusion and on the starve fed single screw extrusion. Finally, development perspectives in this field have been discussed.


Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 775
Author(s):  
Katarzyna Nawrotek ◽  
Mariusz Mąkiewicz ◽  
Dawid Zawadzki

Major efforts for the advancement of tubular-shaped implant fabrication focused recently on the development of 3D printing methods that can enable the fabrication of complete devices in a single printing process. However, the main limitation of these solutions is the use of non-biocompatible polymers. Therefore, a new technology for obtaining hybrid implants that employ polymer extrusion and electrophoretic deposition is applied. The fabricated structures are made of two layers: polycaprolactone skeleton and chitosan–hydroxyapatite electrodeposit. Both of them can be functionalized by incorporation of mechanical or biological cues that favor ingrowth, guidance, and correct targeting of axons. The electrodeposition process is conducted at different voltages in order to determine the influence of this process on the structural, chemical, and mechanical properties of implants. In addition, changes in mechanical properties of implants during their incubation in phosphate-buffered solution (pH 7.4) at 37 °C up to 28 days are examined. The presented technology, being low-cost and relatively simple, shall find a broad scope of applications in customized nerve tissue engineering.


2021 ◽  
Vol 93 ◽  
pp. 106971
Author(s):  
Suleyman Deveci ◽  
Birkan Eryigit ◽  
Susanne Nestelberger

Sign in / Sign up

Export Citation Format

Share Document