Zwitterionic imidazolium salt: an effective green organocatalyst in synthetic chemistry

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Sumit Ghosh ◽  
Debashis Ghosh ◽  
Alakananda Hajra

Abstract An environmentally benign, stable yet efficient organocatalyst is highly desirable from the viewpoint of green chemistry and catalysis. Imidazole-based zwitterionic-type molten salts are a new type of organocatalysts with high catalytic application in various organic transformations with added advantage of room temperature ionic liquid (RTIL) property. Most importantly, these ionic-liquid catalysts are easily recyclable and subsequently reusable for multiple times without loss of significant catalytic efficiency. It has also been evident that C2–H of the imidazole has a vital role in catalyzing the reaction via electrophilic activation. Moreover, by changing the cations and/or anions, the properties of ILs can be tuned in many ways. In this article, the role of imidazolium zwitterionic molten salts as an organocatalyst for selective organic transformations including syn-selective aza-Henry reaction, Erlenmeyer reaction, synthesis of different heterocycles and their functionalization and regioselective ring-opening reactions has been elaborated chronically which will definitely be helping to the readers to explore this new class of organocatalyst for further applications.

2020 ◽  
Vol 98 (10) ◽  
pp. 630-634
Author(s):  
Lia Zaharani ◽  
Nader Ghaffari Khaligh ◽  
Taraneh Mihankhah ◽  
Mohd Rafie Johan ◽  
Nor Aliya Hamizi

This work presents a new catalytic application of 4,4′-trimethylenedipiperidine for the efficient synthesis of a series of dihydro-[1,2,4] triazolo[1,5-a]pyrimidines. According to the principles of green chemistry, the reaction was performed (a) in a solvent mixture comprised of water and ethanol (1:1 v/v) at reflux temperature and (b) solvent-free grinding in a mortar by a pestle. The organocatalyst could be reused up to 10 runs, and no reduction of catalytic activity was detected. A variety of substituted dihydro-[1,2,4] triazolo[1,5-a]pyrimidines were obtained in good to excellent yields under eco-friendly conditions. 4,4′-Trimethylenedipiperidine is commercially available and easy to handle, and it also shows high thermal stability and good solubility in water. This work revealed that this organocatalyst, a hydrogen bond donor to active carbonyl groups and simultaneously a Lewis base through the nitrogen atom of second piperidine moiety, could play a vital role in the promotion of the one-pot multi-component reactions. The main merits of the current methodology include short reaction time, wide substrate scope, use of a metal-free catalyst and green solvents, and simple work-up process. Furthermore, this organocatalyst can be an alternative to piperidine for organic transformations.


RSC Advances ◽  
2015 ◽  
Vol 5 (1) ◽  
pp. 635-639 ◽  
Author(s):  
Tien Dat Do ◽  
Andreea R. Schmitzer

This paper describes the development of a new family of ionic liquid crystals based on imidazolium salts and their applications as media for intramolecular Diels Alder reactions.


ChemInform ◽  
2015 ◽  
Vol 46 (32) ◽  
pp. no-no
Author(s):  
Pedavenkatagari Narayana Reddy ◽  
Pannala Padmaja ◽  
Basireddy V. Subba Reddy ◽  
Gundla Rambabu

2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Chenghong Zhang ◽  
Bin He ◽  
Zhipeng Wang ◽  
Yanmin Zhou ◽  
Aiguo Ming

Due to their light weight, flexibility, and low energy consumption, ionic electroactive polymers have become a hotspot for bionic soft robotics and are ideal materials for the preparation of soft actuators. Because the traditional ionic electroactive polymers, such as ionic polymer-metal composites (IPMCs), contain water ions, a soft actuator does not work properly upon the evaporation of water ions. An ionic liquid polymer gel is a new type of ionic electroactive polymer that does not contain water ions, and ionic liquids are more thermally and electrochemically stable than water. These liquids, with a low melting point and a high ionic conductivity, can be used in ionic electroactive polymer soft actuators. An ionic liquid gel (ILG), a new type of soft actuator material, was obtained by mixing 1-butyl-3-methylimidazolium tetrafluoroborate (BMIMBF4), hydroxyethyl methacrylate (HEMA), diethoxyacetophenone (DEAP) and ZrO2 and then polymerizing this mixture into a gel state under ultraviolet (UV) light irradiation. An ILG soft actuator was designed, the material preparation principle was expounded, and the design method of the soft robot mechanism was discussed. Based on nonlinear finite element theory, the deformation mechanism of the ILG actuator was deeply analyzed and the deformation of the soft robot when grabbing an object was also analyzed. A soft robot was designed with the soft actuator as the basic module. The experimental results show that the ILG soft robot has good driving performance, and the soft robot can grab a 105 mg object at an input voltage of 3.5 V.


2019 ◽  
Vol 7 (5) ◽  
pp. 2172-2183 ◽  
Author(s):  
Qingqing Rao ◽  
Ao Li ◽  
Jiawen Zhang ◽  
Jingxian Jiang ◽  
Qinghua Zhang ◽  
...  

A new type of fluorinated ionic liquid infused self-repairing slippery surface with double responses and controllable wettability.


Sign in / Sign up

Export Citation Format

Share Document