APPLICATION OF ULTRASOUND IN MEMBRANE SEPARATION PROCESSES: A REVIEW

2006 ◽  
Vol 22 (3) ◽  
Author(s):  
Shobha Muthukumaran ◽  
Sandra E. Kentish ◽  
Geoff W. Stevens ◽  
Muthupandian Ashokkumar
2017 ◽  
Vol 23 (2) ◽  
pp. 218-230 ◽  
Author(s):  
Xiaoying Zhu ◽  
Renbi Bai

Background: Bioactive compounds from various natural sources have been attracting more and more attention, owing to their broad diversity of functionalities and availabilities. However, many of the bioactive compounds often exist at an extremely low concentration in a mixture so that massive harvesting is needed to obtain sufficient amounts for their practical usage. Thus, effective fractionation or separation technologies are essential for the screening and production of the bioactive compound products. The applicatons of conventional processes such as extraction, distillation and lyophilisation, etc. may be tedious, have high energy consumption or cause denature or degradation of the bioactive compounds. Membrane separation processes operate at ambient temperature, without the need for heating and therefore with less energy consumption. The “cold” separation technology also prevents the possible degradation of the bioactive compounds. The separation process is mainly physical and both fractions (permeate and retentate) of the membrane processes may be recovered. Thus, using membrane separation technology is a promising approach to concentrate and separate bioactive compounds. Methods: A comprehensive survey of membrane operations used for the separation of bioactive compounds is conducted. The available and established membrane separation processes are introduced and reviewed. Results: The most frequently used membrane processes are the pressure driven ones, including microfiltration (MF), ultrafiltration (UF) and nanofiltration (NF). They are applied either individually as a single sieve or in combination as an integrated membrane array to meet the different requirements in the separation of bioactive compounds. Other new membrane processes with multiple functions have also been developed and employed for the separation or fractionation of bioactive compounds. The hybrid electrodialysis (ED)-UF membrane process, for example has been used to provide a solution for the separation of biomolecules with similar molecular weights but different surface electrical properties. In contrast, the affinity membrane technology is shown to have the advantages of increasing the separation efficiency at low operational pressures through selectively adsorbing bioactive compounds during the filtration process. Conclusion: Individual membranes or membrane arrays are effectively used to separate bioactive compounds or achieve multiple fractionation of them with different molecule weights or sizes. Pressure driven membrane processes are highly efficient and widely used. Membrane fouling, especially irreversible organic and biological fouling, is the inevitable problem. Multifunctional membranes and affinity membranes provide the possibility of effectively separating bioactive compounds that are similar in sizes but different in other physical and chemical properties. Surface modification methods are of great potential to increase membrane separation efficiency as well as reduce the problem of membrane fouling. Developing membranes and optimizing the operational parameters specifically for the applications of separation of various bioactive compounds should be taken as an important part of ongoing or future membrane research in this field.


2021 ◽  
Vol 767 ◽  
pp. 144346
Author(s):  
Xiang Li ◽  
Shuting Shen ◽  
Yuye Xu ◽  
Ting Guo ◽  
Hongliang Dai ◽  
...  

2020 ◽  
Vol 15 (1) ◽  
pp. 122-132 ◽  
Author(s):  
Carolina Conde-Mejía ◽  
Arturo Jiménez-Gutiérrez

AbstractAfter the biomass pretreatment and fermentation processes, the purification step constitutes a major task in bioethanol production processes. The use of membranes provides an interesting choice to achieve high-purity bioethanol. Membrane separation processes are generally characterized by low energy requirements, but a high capital investment. Some major design aspects for membrane processes and their application to the ethanol dehydration problem are addressed in this work. The analysis includes pervaporation and vapor permeation methods, and considers using two types of membranes, A-type zeolite and amorphous silica membrane. The results identify the best combination of membrane separation method and type of membrane needed for bioethanol purification.


2005 ◽  
Vol 51 (6-7) ◽  
pp. 181-192 ◽  
Author(s):  
Z. Lewandowski ◽  
H. Beyenal

The goal of this presentation is to identify biofouling mechanisms that cause undesirable effects to the membrane separation processes of flux decline and pressure drop. The underlying assumption of this presentation is that biofouling is unavoidable and that the operator cannot eliminate it entirely. This premise justifies research efforts toward understanding the mechanisms by which biofouling affects the membrane processes, rather than expecting that technology can entirely eliminate membrane biofouling in the near future. An improved understanding of biofouling mechanisms may lead to better membrane design, better membrane modules, and better membrane cleaning procedures.


2019 ◽  
pp. 243-258
Author(s):  
Louis Theodore ◽  
R. Ryan Dupont

2021 ◽  
Author(s):  
Wei Liu ◽  
Ming Yang ◽  
Jing Liu ◽  
Meijia Yang ◽  
Jing Li ◽  
...  

Abstract The unique magnetic, electronic and optical features derived from their unpaired electrons have made radical polymers an attractive material platform for various applications. Here, we report solution-processable radical polymer membranes with multi-level porosities and study the impact of free radicals on important membrane separation processes including solar vapor generation, hydrogen separation and CO2 capture. The radical polymer is a supreme light absorber over the full solar irradiation range with sufficient water transport channels, leading to a highly efficient solar evaporation membrane. In addition, the radical polymer with micropores and adjustable functional groups are broad-spectrum gas separation membranes for both hydrogen separation and CO2 capture. First principle calculations indicate that the conjugated polymeric network bearing radicals is more chemically reactive with CO2, compared with H2, N2 and CH4. This is evidenced by a high CO2 permeability in gas separation membranes made of the conjugated radical polymer.


Sign in / Sign up

Export Citation Format

Share Document