The role of the basal ganglia in motivated behavior

2012 ◽  
Vol 23 (5-6) ◽  
Author(s):  
Claudio Da Cunha ◽  
Alexander Gomez-A ◽  
Charles D. Blaha
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Lei Xiao ◽  
Devin P. Merullo ◽  
Therese M. I. Koch ◽  
Mou Cao ◽  
Marissa Co ◽  
...  

AbstractDisruption of the transcription factor FoxP2, which is enriched in the basal ganglia, impairs vocal development in humans and songbirds. The basal ganglia are important for the selection and sequencing of motor actions, but the circuit mechanisms governing accurate sequencing of learned vocalizations are unknown. Here, we show that expression of FoxP2 in the basal ganglia is vital for the fluent initiation and termination of birdsong, as well as the maintenance of song syllable sequencing in adulthood. Knockdown of FoxP2 imbalances dopamine receptor expression across striatal direct-like and indirect-like pathways, suggesting a role of dopaminergic signaling in regulating vocal motor sequencing. Confirming this prediction, we show that phasic dopamine activation, and not inhibition, during singing drives repetition of song syllables, thus also impairing fluent initiation and termination of birdsong. These findings demonstrate discrete circuit origins for the dysfluent repetition of vocal elements in songbirds, with implications for speech disorders.


1987 ◽  
Vol 50 (3) ◽  
pp. 367-368 ◽  
Author(s):  
A S Walters ◽  
M Katchen ◽  
J Fleishman ◽  
S Chokroverty ◽  
R Duvoisin

2004 ◽  
Vol 18 (2/3) ◽  
pp. 130-139 ◽  
Author(s):  
Guillermo Paradiso ◽  
Danny Cunic ◽  
Robert Chen

Abstract Although it has long been suggested that the basal ganglia and thalamus are involved in movement planning and preparation, there was little direct evidence in humans to support this hypothesis. Deep brain stimulation (DBS) is a well-established treatment for movement disorders such as Parkinson's disease, tremor, and dystonia. In patients undergoing DBS surgery, we recorded simultaneously from scalp contacts and from electrodes surgically implanted in the subthalamic nucleus (STN) of 13 patients with Parkinson's disease and in the “cerebellar” thalamus of 5 patients with tremor. The aim of our studies was to assess the role of the cortico-basal ganglia-thalamocortical loop through the STN and the cerebello-thalamocortical circuit through the “cerebellar” thalamus in movement preparation. The patients were asked to perform self-paced wrist extension movements. All subjects showed a cortical readiness potential (RP) with onset ranging between 1.5 to 2s before the onset of movement. Subcortical RPs were recorded in 11 of 13 with electrodes in the STN and in 4 of 5 patients with electrodes in the thalamus. The onset time of the STN and thalamic RPs were not significantly different from the onset time of the scalp RP. The STN and thalamic RPs were present before both contralateral and ipsilateral hand movements. Postoperative MRI studies showed that contacts with maximum RP amplitude generally were inside the target nucleus. These findings indicate that both the basal ganglia and the cerebellar circuits participate in movement preparation in parallel with the cortex.


2010 ◽  
Vol 68 ◽  
pp. e185
Author(s):  
Ryoji Fukabori ◽  
Kana Okada ◽  
Nobuyuki Kai ◽  
Kenta Kobayashi ◽  
Yuji Tsutsui ◽  
...  

1987 ◽  
Vol 151 (3) ◽  
pp. 288-301 ◽  
Author(s):  
P. J. McKenna

The dopamine hypothesis of schizophrenia implies that positive schizophrenic symptoms should be understandable by reference to brain structures receiving a dopamine innervation, or in terms of the functional role of dopamine itself. The basal ganglia, ventral striatum, septo-hippocampal system, and prefrontal cortex, sites of mesotelencephalic dopamine innervation, are examined and it is argued that their dysfunction could form the basis of particular schizophrenic symptom classes. The postulated involvement of dopamine in reinforcement processes might further assist such interpretations. This type of analysis can be extended to other categories of schizophrenic psychopathology.


1998 ◽  
Vol 32 (1-2) ◽  
pp. 213-223 ◽  
Author(s):  
C Deransart ◽  
L Vercueil ◽  
C Marescaux ◽  
A Depaulis

2014 ◽  
Vol 37 (6) ◽  
pp. 554-555 ◽  
Author(s):  
Sascha Frühholz ◽  
David Sander ◽  
Didier Grandjean

AbstractNeuroimaging studies have verified the important integrative role of the basal ganglia during affective vocalizations. They, however, also point to additional regions supporting vocal monitoring, auditory–motor feedback processing, and online adjustments of vocal motor responses. For the case of affective vocalizations, we suggest partly extending the model to fully consider the link between primate-general and human-specific neural components.


Sign in / Sign up

Export Citation Format

Share Document