The orthorhombic-to-monoclinic phase transition in NbCrP – Peierls distortion of the chromium chain

Author(s):  
Christian Paulsen ◽  
Jutta Kösters ◽  
Stefan Seidel ◽  
Yoshiki Kuwata ◽  
Hisashi Kotegawa ◽  
...  

Abstract The equiatomic metal-rich phosphide NbCrP shows a structural phase transition around 125 K. The structures of the high- and low-temperature modifications were refined from single crystal X-ray diffractometer data of an un-twinned crystal: TiNiSi type, Pnma, a = 619.80(2), b = 353.74(4), c = 735.24(6) pm, wR = 0.0706, 288 F 2 values, 20 variables at 240 K and P121/c1, a = 630.59(3), b = 739.64(4), c = 933.09(5) pm, β = 132.491(6)°, wR = 0.0531, 1007 F 2 values, 57 variables at 90 K. The structural phase transition is of a classical Peierls type. The equidistant chromium chain in HT-NbCrP (353.7 pm Cr–Cr) splits pairwise into shorter (315.2 pm) and longer (373.2 pm) Cr–Cr distances. This goes along with a strengthening of Cr–P bonding. The superstructure formation is discussed on the basis of a group–subgroup scheme. Electronic structure calculations show a lifting of band degeneracy. Protection of the non-symmorphic symmetry of space group Pnma is crucial for the phase transition. The estimated charge modulation is consistent with the interpretation as Peierls transition.

Sign in / Sign up

Export Citation Format

Share Document