White Synchrotron Radiation Topography of (11̄0) Nickel Single Crystal

1982 ◽  
Vol 37 (5) ◽  
pp. 505-511
Author(s):  
J. D. Stephenson

Changes in 70.53° magnetic domain structure on the surface of a perfect (11̄0) nickel crystal have been observed using white synchrotron X-radiation topography. The crystal was influenced by a variable [11̄0] magnetic field. At field strengths ≿ 100 A/m [111̄]-spike domains, thought to be traces of [011], 70.53° (oblique) magnetic domain walls, appeared within [111]-bands (0.4 mm wide) in the topographs. Reversal of the field produced similar spikes at equivalent field values but in different regions of the crystal.

2015 ◽  
Vol 15 (10) ◽  
pp. 7620-7623 ◽  
Author(s):  
Chunghee Nam

We show that a type of magnetic domain walls (DWs) can be monitored by anisotropic magnetoresistance (AMR) measurements due to a specific DW volume depending on the DW type in NiFe magnetic wires. A circular DW injection pad is used to generate DWs at a low magnetic field, resulting in reliable DW introduction into magnetic wires. DW pinning is induced by a change of DW energy at an asymmetric single notch. The injection of DW from the circular pad and its pinning at the notch is observed by using AMR and magnetic force microscope (MFM) measurements. A four-point probe AMR measurement allows us to distinguish the DW type in the switching process because DWs are pinned at the single notch, where voltage probes are closely placed around the notch. Two types of AMR behavior are observed in the AMR measurements, which is owing to a change of DW structures. MFM images and micromagnetic simulations are consistent with the AMR results.


2014 ◽  
Vol 215 ◽  
pp. 437-442 ◽  
Author(s):  
Lidia A. Pamyatnykh ◽  
Georgy A. Shmatov ◽  
Mikhail S. Lysov ◽  
Sergey E. Pamyatnykh ◽  
Dmitry S. Mehonoshin

The results of study of domain walls oscillations in harmonic magnetic field H = H0sin (2πft) oriented perpendicular to ferrite garnet (TbErGd)3(FeAl)5O12 (111) sample plate for amplitudes that include the drift of domain walls are reported. Numerical modelling of domain walls motion was performed for frequencies f~102 Hz, where the drift is observed experimentally. Comparison of results of numerical modelling with experimental results shows their qualitative agreement. It was established that domain walls oscillations amplitude is a linear function of amplitude of oscillating magnetic field.


Author(s):  
L. F. Allard ◽  
A. P. Rowe ◽  
P. L. Fan

In order to observe magnetic domain walls by Lorentz microscopy techniques it is often necessary either to operate the microscope with the objective lens off, thus severely limiting the magnification, or to move the specimen from its usual position or make some other modification so that the field to which it is subjected is not so strong that it saturates the specimen. However, conditions in the JEM-6A have proved favorable for observation of domains in single crystal iron films by the out-of-focus method without any modifications, using either the regular specimen stage with the small bore pole piece or the tilting stage with the large bore pole piece. The tilting stage is particularly useful for these studies because the domains are very sensitive to small differences in inclination in the field.


2009 ◽  
Vol 152-153 ◽  
pp. 529-532
Author(s):  
Kohei Sasage ◽  
Naoya Okamoto ◽  
Hana Tsujikawa ◽  
Takehiro Yamaoka ◽  
Eiji Saitoh

A pair of magnetic domain walls (DWs) in ferromagnetic NiFe rings has been investigated in terms of the magnetic force microscopy (MFM). When the distance between the rings d is greater than a threshold value dth, MFM signals indicate that a DW in the ring is dragged due to a stray magnetic field from an MFM probe tip. When d < dth, this drag signals disappears; DWs are bound to each other by the DW-DW interaction. This transition can be argued in terms of the competition between the DW-DW magnetostatic interaction and the DW-drag potential. From the d-dependent MFM data, the DW-drag potential was estimated.


Nano Letters ◽  
2015 ◽  
Vol 15 (5) ◽  
pp. 2773-2779 ◽  
Author(s):  
Hao-Ting Huang ◽  
Mei-Feng Lai ◽  
Yun-Fang Hou ◽  
Zung-Hang Wei

2012 ◽  
Vol 190 ◽  
pp. 265-268
Author(s):  
Z.V. Gareeva ◽  
A.K. Zvezdin

The influence of magnetoelectric interactions on the magnetic structure, flexomagnetoelectric polarization and magnetization in thin multiferroics film has been investigated. The correlation between antiferromagnetic domain structure and ferroelectric domain pattern has been revealed. It has been shown the asymmetry of the antiferromagnetic vector distribution over multiferroics film in the case of 1090 and 710 ferroelectric domain walls. The direction of spins rotation in magnetic domain walls is determined by the type of ferroelectric domains and the antiferromagnetic vector in the centre of ferroelectric domain. The peculiarities of the micromagnetic distribution are reflected in the behavior of polarization and magnetization, which appears to be different for 1800, 1090 and 710 ferroelectric domains.


Sign in / Sign up

Export Citation Format

Share Document