The Rotational Spectrum of 2,2-Dimethylthiirane

1993 ◽  
Vol 48 (11) ◽  
pp. 1102-1106 ◽  
Author(s):  
H. Hartwig ◽  
H. Dreizler

Abstract The rotational spectrum of 2,2-dimethylthiirane (isobutylene sulfide) has been assigned for the ground and torsionally excited states. The rotational and centrifugal distortion constants, as well as the potential parameters V3 and V´1 2 are determined. The ground state spectra of the 13C and 34S isotopomers were assigned in natural abundance and heavy atom structure parameters are given.

1986 ◽  
Vol 41 (3) ◽  
pp. 483-490 ◽  
Author(s):  
O. L. Stiefvater

The earlier prediction of the preferred and the less stable rotameric conformations of isobutyraldehyde, (CH3)2CHCHO, has been confirmed experimentally by microwave spectroscopy. The compound exists mainly in a gauche conformation, in which one of the methyl groups is eclipsed by the oxygen atom, and the less stable rotamer is the trans conformation, in which the oxygen atom eclipses the isopropyl hydrogen.Ground state rotational constants (in MHz) and centrifugal distortion constants (in kHz), together with dipole moments (in D), are:Rotation spectra due to three torsionally excited states of each rotamer have been identified, along with satellites arising from CH3 internal rotation and CC2 wagging.


1975 ◽  
Vol 30 (8) ◽  
pp. 1001-1014 ◽  
Author(s):  
Manfred Winnewisser ◽  
Gisbert Winnewisser ◽  
T. Honda ◽  
E. Hirota

Abstract The pure rotational spectrum of trans-acrolein in the ground vibrational state has been assigned in the frequency region from 8 GHz to 180 GHz. The measured absorption lines encompass a-type transitions from the qRK, qQ1, qQ2 branches and 6-type transitions from the rP0, rP1, rP2, rR0 brandies for values of J up to 23. The rotational constants have been refined and all quartic and sextic centrifugal distortion constants have been determined using Watson's reduced Hamiltonian. This information has been used to predict line positions of astrophysical interest to warrant the interstellar line search for trans-acrolein.


1987 ◽  
Vol 65 (1) ◽  
pp. 32-37 ◽  
Author(s):  
W. A. Kreiner ◽  
P. Müller ◽  
L. Jörissen ◽  
M. Oldani ◽  
A. Bauder

Infrared-laser – radio-frequency double-resonance experiments and pulsed-microwave Fourier-transform measurements have been performed with 13CD4. From 25 observed ΔJ = 0 transitions in the vibronic ground state, the tensorial centrifugal-distortion constants Dt = 32.6600(12) kHz, H4t = −2.0302(61) Hz, H6t = 1.1692(29) Hz, L4t = 1.201(77) × 10−4 Hz, L6t = −1.353(63) × 10−4 Hz, and L8t = −1.466(46) × 10−4 Hz have been determined. Experimental carbon-13 and deuterium isotope effects on the tensorial centrifugal-distortion constants of methane have been compared with theoretical predictions.


1996 ◽  
Vol 51 (10-11) ◽  
pp. 1099-1106 ◽  
Author(s):  
Holger Hartwig ◽  
Helmut Dreizler

Abstract We used the advanced technique of Fourier transform microwave spectroscopy to measure and assign the ground state rotational spectrum of anti-2,3-dimethylthiirane, and to analyse the internal rotation of the two methyl groups. The potential parameters obtained are V3 = 13.1678(21) and V12' = -1.6678(25) kJ/mol. The measurement and assignment of the 13C and 34S isotopomers in the ground state allowed to determine the molecular structure of the heavy atom frame using the Τs and Τ0 methods.


1980 ◽  
Vol 35 (5) ◽  
pp. 483-489 ◽  
Author(s):  
Manfred Winnewisser ◽  
Eckhard Schäfer

Abstract a-type rotational transitions of molecules in the vibrational ground state of thioketene, H2C=C=S, have been measured in the millimeter wavelength region. The measurements yielded improved rotational constants:A = 286 655(82) MHz,B = 5 659.47596(72) MHz,C = 5 544.51269(72) MHz.A detailed centrifugal distortion analysis by means of Watson's S-reduced Hamiltonian led to the determination of four quartic, two sextic and two higher order distortion constants:DJ = 1.08569(4) kHz, HJK = 0.716(20) Hz, DJK = 168.269(77) kHz, HKJ = -408.7(73) Hz, D1 = -25.46(68) Hz, LKJ = 0.65(24) Hz, d2 = - 5.21(35) Hz, SKJ = -0.0533(24) Hz. Effective rotational and centrifugal distortion constants using planarity conditions were calculated. The electric dipole moment of thioketene was determined to be μ = 1.01(3) D.


1975 ◽  
Vol 30 (5) ◽  
pp. 672-689 ◽  
Author(s):  
Koichi Yamada ◽  
Manfred Winnewisser

Abstract The pure rotational spectrum of vinyl isocyanide in the ground vibrational state has been as-signed in the frequency region from 8 GHz to 180 GHz. The measured absorption lines encompass 157 a-type transitions from the qRK , qQ1, qQ2,qQ3, qQ4 and qQ5 branches and 48 b-type transitions from the rP0 , rP1, rP2, rP3 , rP4 , rP5, rQ0 , and rQ1 branches for values of J up to 54. The rotational constants have been refined and all quartic and sextic centrifugal distortion constants have been determined using Watson's reduced Hamiltonian. No quadrupole hyperfine splitting was observed.


1983 ◽  
Vol 38 (11) ◽  
pp. 1238-1247 ◽  
Author(s):  
Dirk Hübner ◽  
Eckhard Fliege ◽  
Dieter H. Sutter

The rotational spectrum of 3-bromothiophene was investigated in the frequency range between 8 and 18 GHz by use of a microwave Fourier transform spectrometer. Both a- and b-type spectra were assigned for the vibronic ground state. Rotational constants, quartic centrifugal distortion constants and quadrupole coupling constants were obtained for the 79Br- and 81Br-isotopic species. For the analysis, the effective rotational Hamiltonian including centrifugal distortion in the form of Van Eijck's symmetric top reduction and bromine quadrupole coupling was set up in the coupled basis of the limiting symmetric top, J, K, I, F, MF>, and was diagonalized numerically. Spin rotation interaction was neglected


1989 ◽  
Vol 44 (7) ◽  
pp. 680-682 ◽  
Author(s):  
Michael Krüger ◽  
Helmut Dreizler

Abstract The ground state rotational spectrum of 2-isocyano-propane is assigned. The rotational constants and the quartic centrifugal distortion constants are determined by Microwave Fourier Transform (MWFT) Spectroscopy. The analysis of the Stark effect leads to a total dipole moment of 4.055(1) D.


1996 ◽  
Vol 51 (1-2) ◽  
pp. 123-128 ◽  
Author(s):  
H. Klein ◽  
S. P. Belov ◽  
G. Winnewisser

Abstract The pure rotational spectrum of trioxane, (H2CO)3 the trimer of formaldehyde, has been recorded with high resolution in the frequency range between 326 and 947 GHz for the main isotopomer, the 13 C, and the 18O isotopic species in the vibrational ground state. These new high J and K data reveal that the molecule is fairly rigid. For the constants determinable from the recorded high J and K spectra (J = 90 and K = 75) the rotational constant B = 5273.257 180(33) MHz,the two quartic centrifugal distortion constants DJ, and DJK, and the three sextic constants HJ, HJK, and HKJ are needed in the fit to reproduce the measured spectra within experimental accuracy. In addition, for the 13C isotopomer the sextic constants HJK and HKJ are determined as well as the off-diagonal parameters d1 and d2.


1993 ◽  
Vol 48 (12) ◽  
pp. 1219-1222 ◽  
Author(s):  
U. Kretschmer ◽  
H. Dreizler

Abstract We investigated the 33S nuclear quadrupole coupling of thiazole- 33S in natural abundance by molecular beam Fourier transform microwave spectroscopy. In addition the 14N nuclear quadrupole coupling could be analyzed with high precision. We derived the rotational constants A = 8529.29268 (70) MHz, B = 5427.47098 MHz, and C = 3315.21676 (26) MHz, quartic centrifugal distortion constants and the quadrupole coupling constants of 33S χaa = 7.1708 (61) MHz and χbb= -26.1749 (69) MHz and of 14N χ aa = -2.7411 (61) MHz and χbb = 0.0767 (69) MHz.


Sign in / Sign up

Export Citation Format

Share Document