Effect of Finite Larmor Radius on the Rayleigh-Taylor Instability of Two Component Magnetized Rotating Plasma

1998 ◽  
Vol 53 (12) ◽  
pp. 937-944 ◽  
Author(s):  
P. K. Sharma ◽  
R. K. Chhajlani

Abstract The Rayleigh-Taylor (R-T) instability of two superposed plasmas, consisting of interacting ions and neutrals, in a horizontal magnetic field is investigated. The usual magnetohydrodynamic equations, including the permeability of the medium, are modified for finite Larmor radius (FLR) corrections. From the relevant linearized perturbation equations, using normal mode analysis, the dispersion relation for the two superposed fluids of different densities is derived. This relation shows that the growth rate unstability is reduced due to FLR corrections, rotation and the presence of neutrals. The horizontal magnetic field plays no role in the R-T instability. The R-T instability is discussed for various simplified configurations. It remains unaffected by the permeability of the porous medium, presence of neutral particles and rotation. The effect of different factors on the growth rate of R-T instability is investigated using numerical analysis. Corresponding graphs are plotted for showing the effect of these factors on the growth of the R-T instability.

1993 ◽  
Vol 48 (8-9) ◽  
pp. 844-850
Author(s):  
P. D. Ariel

Abstract The Rayleigh-Taylor instability of a compressible plasma in the presence of a horizontal magnetic field is investigated, taking into account the effects of finite Larmor radius. Only transverse perturbations are considered. The problem is shown to be characterized by a variational principle. Using it, the dispersion relation is obtained for a plasma layer of finite thickness and having an exponentially varying density. It is found that the finite Larmor radius effects can thoroughly stabilize unstable configurations. For configurations which are not completely stabilized, the compressibility stabilizes some of the disturbances which are unstable for an incompressible plasma.


2021 ◽  
Vol 16 ◽  
pp. 110-119
Author(s):  
Pardeep Kumar ◽  
Sumit Gupta

The effect of finite Larmor radius of the ions on thermal convection of a plasma is investigated. The case with vertical magnetic field is discussed. Following linear stability theory and normal mode analysis method, the dispersion relation is obtained. It is found that the presence of finite Larmor radius and magnetic field introduces oscillatory modes in the system which were, otherwise, non-existent in their absence. When the instability sets in as stationary convection, finite Larmor radius is found to have a stabilizing effect. Medium permeability has a destabilizing (or stabilizing) effect and the magnetic field has a stabilizing (or destabilizing) effect under certain conditions in the presence of finite Larmor radius effect whereas in the absence of finite Larmor radius effect, the medium permeability and the magnetic field have destabilizing and stabilizing effects, respectively. The sufficient conditions for the non-existence of overstability are also obtained.


2021 ◽  
Vol 16 ◽  
pp. 68-78
Author(s):  
Pardeep Kumar ◽  
Gursharn Jit Singh

The thermal convection of a plasma in porous medium is investigated to include simultaneously the effect of rotation and the finiteness of the ion Larmor radius (FLR) in the presence of a vertical magnetic field. Following linear stability theory and normal mode analysis method, the dispersion relation is obtained. It is found that the presence of a uniform rotation, finite Larmor radius and magnetic field introduces oscillatory modes in the system which were, otherwise, non-existent in their absence. When the instability sets in as stationary convection, finite Larmor radius, rotation, medium permeability and magnetic field are found to have stabilizing (or destabilizing) effects under certain conditions. In the absence of rotation, finite Larmor radius has stabilizing effect on the thermal instability of the system whereas the medium permeability and the magnetic field may have stabilizing or destabilizing effect under certain conditions. The conditions κ<[ε+(1-ε) (ρ_S C_S)/(ρ_0 C)]η and κ<(ε^2 [ε+(1-ε) (ρ_S C_S)/(ρ_0 C)]ν)/(P^2 [εP{√U (x-2)+√(T_(A_1 ) )}^2-2Q_1 ] ) are the sufficient conditions for non-existence of overstability, the violation of which does not necessary involve an occurrence of overstability.


1985 ◽  
Vol 40 (8) ◽  
pp. 826-833
Author(s):  
Rajkamal Sanghvi ◽  
R. K. Chhajlani

The Rayleigh-Taylor (RT) instability of a stratified and viscid magnetoplasma including the effects of "finite-resistivity and suspended particles is investigated using normal mode analysis. The horizontal magnetic field and the viscosity of the medium are assumed to be variable. The dispersion relation, which is obtained for the general case on employing boundary conditions appropriate to the case of two free boundaries, is then specialized for the longitudinal and transverse modes. It is found that the criterion of stable stratification remains essentially unchanged and that the unstable stratification for the longitudinal mode can be stabilized for a certain wave number band, whereas the transverse mode remains unstable or all wave numbers which can be stabilized by a suitable choice of the magnetic field for vanishing resistivity. Thus, resistivity is found to have a destabilizing influence on the RT configuration. The growth rates of the unstable RT modes with the kinematic viscosity and the relaxation frequency parameter of the suspended particles have been analytically evaluated. Dust (suspended particles) tends to stabilize the configuration when the medium is considered viscid with infinite conductivity. The kinematic viscosity has a stabilizing influence on the ideal plasma modes.


1974 ◽  
Vol 29 (3) ◽  
pp. 518-523 ◽  
Author(s):  
K. M. Srivastava

We have investigated the effect of finite Larmor radius on the Rayleigh-Taylor instability of a semi-infinite, compressible, stratified and infinitely conducting plasma. The plasma is assumed to have a one dimensional density and magnetic field gradients. The eigenvalue problem has been solved under Boussinesq approximation for disturbances parallel to the magnetic field. It has been established that for perturbation parallel to the magnetic field, the system is stable for both stable and unstable stratification. For perturbation perpendicular to the magnetic field, the problem has been solved without Boussinesq approximation. The dispersion relation has been discussed in the two limiting cases, the short and long wave disturbances. It has been observed that the gyroviscosity has a destabilizing influence from k = 0 to k = 4.5 for ß* = 0.1 and for ß* = 0.1 up to k* = 2.85 and then onwards it acts as a stabilizing agent. It has a damping effect on the short wave disturbances. For some parameters, the largets imaginary part has been shown in Figs. 1 and 2


1984 ◽  
Vol 39 (10) ◽  
pp. 939-944 ◽  
Author(s):  
R. K. Chhajlani ◽  
R. K. Sanghvi ◽  
P. Purohit

Abstract The hydromagnetric Rayleigh-Taylor instability of a composite medium has been studied in the presence of suspended particles for an exponentially varying density distribution. The prevalent horizontal magnetic field and viscosity of the medium are assumed to be variable. The dispersion relation is derived for such a medium. It is found that the stability criterion is independent of both viscosity and suspended particles. The system can be stabilized for an appropriate value of the magnetic field. It is found that the suspended particles can suppress as well as enhance the growth rate of the instability in certain regions. The growth rates are obtained for a viscid medium with the inclusion of suspended particles and without it. It has been shown analytically that the growth rate is modified by the inclusion of the relaxation frequency parameter of the suspended particles.


1975 ◽  
Vol 30 (4) ◽  
pp. 461-465
Author(s):  
R. C. Sharma ◽  
Kirti Prakash

Abstract The effects of the finite Larmor radius of the ions on the thermal instability of a plasma are investigated. When the instability sets in as stationary convection, the finite Larmor radius is found to have a stabilizing effect. The conditions for the nonexistence of overstability are investigated. The case with horizontal magnetic field is discussed.


1969 ◽  
Vol 47 (22) ◽  
pp. 2435-2437 ◽  
Author(s):  
P. D. Ariel ◽  
P. K. Bhatia

The effects of a finite Larmor radius of the ions are investigated on the Rayleigh–Taylor instability of a plasma in which there is a density gradient in a direction perpendicular to that of the magnetic field. It is found that the unstable configuration is completely stabilized by the finite Larmor radius effect.


1989 ◽  
Vol 41 (3) ◽  
pp. 427-439 ◽  
Author(s):  
Jan Scheffel ◽  
Mostafa Faghihi

The effect of finite Larmor radius (FLR) on the stability of m = 1 small-axial-wavelength kinks in a z–pinch with purely poloidal magnetic field is investigated. We use the incompressible FLR MHD model; a collisionless fluid model that consistently includes the relevant FLR terms due to ion gyroviscosity, Hall effect and electron diamagnetism. With FLR terms absent, the Kadomtsev criterion of ideal MHD, 2r dp/dr + m2B2/μ0 ≥ 0 predicts instability for internal modes unless the current density is singular at the centre of the pinch. The same result is obtained in the present model, with FLR terms absent. When the FLR terms are included, a normal-mode analysis of the linearized equations yields the following results. Marginally unstable (ideal) modes are stabilized by gyroviscosity. The Hall term has a damping (but not absolutely stabilizing) effect – in agreement with earlier work. On specifying a constant current and particle density equilibrium, the effect of electron diamagnetism vanishes. For a z–pinch with parameters relevant to the EXTRAP experiment, the m = 1 modes are then fully stabilized over the crosssection for wavelengths λ/a ≤ 1, where a denotes the pinch radius. As a general z–pinch result a critical line-density limit Nmax = 5 × 1018 m–1 is found, above which gyroviscous stabilization near the plasma boundary becomes insufficient. This limit corresponds to about five Larmor radii along the pinch radius. The result holds for wavelengths close to, or smaller than, the pinch radius and for realistic equilibrium profiles. This limit is far below the required limit for a reactor with contained alpha particles, which is in excess of 1020 m–1.


Sign in / Sign up

Export Citation Format

Share Document