Effect of Superthermal Polarization Force on Dust Acoustic Nonlinear Structures

2018 ◽  
Vol 73 (9) ◽  
pp. 795-803 ◽  
Author(s):  
Papihra Sethi ◽  
Kuldeep Singh ◽  
N.S. Saini

AbstractAn investigation of the dust acoustic shock waves as well as solitary waves in an unmagnetized dusty plasma consisting of fluid of negatively charged dust grains, superthermal ions, and Maxwellian electrons under the influence of superthermally modified polarization force is presented. The polarization force is significantly influenced by superthermal ions. Reductive perturbation technique has been used to derive the Korteweg-de Vries-Burgers equation. It is illustrated that the superthermal polarization force significantly alters the characteristics of the negative polarity shock and solitary waves. It is also examined that the soliton energy gets depleted by the influence of superthermal polarization force.

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
N. S. Saini ◽  
Kuldeep Singh ◽  
Papihra Sethi

The interaction of dust-acoustic (DA) shock waves in a magnetized dusty plasma under the influence of nonextensively modified polarization force is investigated. The plasma model consists of negatively charged dust, Maxwellian electrons, nonextensive ions, and polarization force. In this investigation, we have derived the expression of polarization force in the presence of nonextensive ions and illustrated the head-on collision between two DA shock waves. The extended Poincaré–Lighthill–Kuo (PLK) method is employed to obtain the two-sided Korteweg–de Vries–Burgers (KdVB) equations and phase shifts of two shock waves. The trajectories and phase shifts of negative potential dust-acoustic shock waves after collision are examined. The combined effects of various physical parameters such as polarization force, nonextensivity of ions, viscosity of dust, and magnetic field strength on the phase shifts of DA shock waves have been studied. The present investigation might be useful to study the process of collision of nonlinear structures in space dusty plasma such as planetary rings where non-Maxwellian particles such as nonextensive ions, negatively charged dust, and electrons are present.


2015 ◽  
Vol 93 (10) ◽  
pp. 1030-1038 ◽  
Author(s):  
Apul N. Dev ◽  
Jnanjyoti Sarma ◽  
Manoj K. Deka

Using the well-known reductive perturbation technique, the three-dimensional (3D) Burgers equation and modified 3D Burgers equation have been derived for a plasma system comprising of non-thermal ions, Maxwellian electrons, and negatively charged fluctuating dust particles. The salient features of nonlinear propagation of shock waves in such plasmas have been investigated in detail. The different temperature non-thermal ions and Maxwellian electrons are found to play an important role in the shock waves solution. The analytical solution of the 3D Burgers equation and modified 3D Burgers equation ratifying the propagation of dust acoustic shock waves are derived using the well-known tanh method. On increasing the population of non-thermal ions, an enhancement in the amplitude of shock waves is seen for negatively charged dust particles. A striking dependence of amplitude and width of shock waves on the ratio of ion temperatures and densities are also reported. Finally we introduced a new stretching coordinate and perturbation for the nth-order nonlinear 3D Burgers equation and its solution by the use of the tanh method. We found that, due to higher nonlinearity, the amplitude of shock waves decreases while width remains constant for all plasma parameters considered in the present investigation. The features accounted here could be relevant in the case of different space and astrophysical plasmas and laboratory dusty plasma for negatively charged dust fluctuation.


2009 ◽  
Vol 75 (4) ◽  
pp. 455-474 ◽  
Author(s):  
ANIMESH DAS ◽  
ANUP BANDYOPADHYAY

AbstractA Korteweg–de Vries (KdV) equation is derived here, that describes the nonlinear behaviour of long-wavelength weakly nonlinear dust acoustic waves propagating in an arbitrary direction in a plasma consisting of static negatively charged dust grains, non-thermal ions and isothermal electrons. It is found that the rarefactive or compressive nature of the dust acoustic solitary wave solution of the KdV equation does not depend on the dust temperature if σdc < 0 or σdc > σd*, where σdc is a function of β1, α and μ only, and σd*(<1) is the upper limit (upper bound) of σd. This β1 is the non-thermal parameter associated with the non-thermal velocity distribution of ions, α is the ratio of the average temperature of the non-thermal ions to that of the isothermal electrons, μ is the ratio of the unperturbed number density of isothermal electrons to that of the non-thermal ions, Zdσd is the ratio of the average temperature of the dust particles to that of the ions and Zd is the number of electrons residing on the dust grain surface. The KdV equation describes the rarefactive or the compressive dust acoustic solitary waves according to whether σdc < 0 or σdc > σd*. When 0 ≤ σdc ≤ σd*, the KdV equation describes the rarefactive or the compressive dust acoustic solitary waves according to whether σd > σdc or σd < σdc. If σd takes the value σdc with 0 ≤ σdc ≤ σd*, the coefficient of the nonlinear term of the KdV equation vanishes and, for this case, the nonlinear evolution equation of the dust acoustic waves is derived, which is a modified KdV (MKdV) equation. A theoretical investigation of the nature (rarefactive or compressive) of the dust acoustic solitary wave solutions of the evolution equations (KdV and MKdV) is presented with respect to the non-thermal parameter β1. For any given values of α and μ, it is found that the value of σdc completely defines the nature of the dust acoustic solitary waves except for a small portion of the entire range of the non-thermal parameter β1.


2010 ◽  
Vol 12 (7) ◽  
pp. 073002 ◽  
Author(s):  
P Bandyopadhyay ◽  
U Konopka ◽  
S A Khrapak ◽  
G E Morfill ◽  
A Sen

2013 ◽  
Vol 91 (7) ◽  
pp. 582-587 ◽  
Author(s):  
Amandeep Singh Bains ◽  
Nareshpal Singh Saini ◽  
Tarsem Singh Gill

An investigation has been made to study the properties of large-amplitude electrostatic solitary waves in dusty plasma containing both negatively and positively charged dust fluids in the presence of superthermal electrons and ions. The energy balance equation is derived by using the Sagdeev pseudopotential approach. The influence of the physical parameters (e.g., superthermality of electrons or ions, density concentration of positive and negative dust particles, solitary speed) on the amplitude of dust acoustic solitary waves has been discussed in detail. It is observed that there exists a critical value of density, below which negative potential solitary structures exist and above which positive potential solitary structures exist.


2016 ◽  
Vol 56 (2) ◽  
pp. 99-103 ◽  
Author(s):  
S. Mayout ◽  
K. Bentabet ◽  
M. Tribeche

Sign in / Sign up

Export Citation Format

Share Document