Nonlinear propagation of dust-acoustic solitary waves in a dusty plasma with arbitrarily charged dust and trapped electrons

Pramana ◽  
2013 ◽  
Vol 80 (6) ◽  
pp. 1031-1039 ◽  
Author(s):  
O RAHMAN ◽  
A A MAMUN
2013 ◽  
Vol 79 (5) ◽  
pp. 691-698 ◽  
Author(s):  
PRASANTA CHATTERJEE ◽  
DEB KUMAR GHOSH ◽  
UDAY NARAYAN GHOSH ◽  
BISWAJIT SAHU

AbstractThe properties of non-planar (cylindrical and spherical) dust-acoustic solitary waves (DA SWs) and double layers (DLs) in an unmagnetised collisionless four-component dusty plasma, whose constituents are positively and negatively charged dust grains, super thermal electrons and Boltzmannian ions are investigated by deriving the modified Gardner (MG) equation. The well known reductive perturbation method is employed to derive the MG equation and solve it numerically to study the nonlinear features of the finite amplitude non-planar DA Gardner solitons (GSs) and DLs, which are shown to exist for κ around its critical value κc (where, κ is the super thermal parameter and κc is the value of κ corresponding to the vanishing of the nonlinear coefficient of the Korteweg-de Vries (K-dV) equation). It is seen that the properties of non-planar DA SWs and DLs are significantly differs in non-planar geometry from planar geometry. It is also found that the magnitude of the amplitude of positive and negative GSs decreases with κ and the width of positive and negative GSs increases with the increase of κ.


2013 ◽  
Vol 79 (5) ◽  
pp. 859-865 ◽  
Author(s):  
M. A. ZAHRAN ◽  
E. K. EL-SHEWY ◽  
H. G. ABDELWAHED

AbstractThe nonlinear propagation of small but finite-amplitude dust-acoustic solitary waves in an unmagnetized, collisionless dusty plasma has been investigated. The fluid model is a generalization to the model of Mamun and Shukla to a more realistic space dusty plasma in different regions of space, viz., cometary tails, mesosphere, and Jupiter's magnetosphere, by considering a four-component dusty plasma consisting of the charged dusty plasma of opposite polarity, isothermal electrons and vortex-like ion distributions in the ambient plasma. A reductive perturbation method was employed to obtain a modified Korteweg–de Vries equation for the first-order potential. The effect of the presence of a positively charged dust fluid, the specific charge ratio μ, the temperature of the positively charged dust fluid, the ratio of constant temperature of free hot ions and the constant temperature of trapped ions, and ion temperature on the soliton properties and dusty grains energy are discussed.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Samira Sharif Moghadam ◽  
Davoud Dorranian

Effect of dust size, mass, and charge distributions on the nonlinear dust acoustic solitary waves (DASWs) in a dusty plasma including negatively charged dust particles, electrons, and nonthermal ions has been studied analytically. Dust particles masses and electrical charges are assumed to be proportional with dust size. Using reductive perturbation methods the Kadomtsev-Petviashvili (KP) equation is derived and its solitary answers are extracted. The coefficients of nonlinear term of KP equation are affected strongly by the size of dust particles when the relative size (the ratio of the largest dust radius to smallest dust radius) is smaller than 2. These coefficients are very sensitive toα, the nonthermal coefficient. According to the results, only rarefactive DASWs will generate in such dusty plasma. Width of DASW increases with increasing the relative size and nonthermal coefficient, while their amplitude decreases. The dust cyclotron frequency changes with relative size of dust particles.


Sign in / Sign up

Export Citation Format

Share Document