Molekül-und Elektronenstruktur des Thioheteroanions [S2 WS2CoS2WS2]2- / Molecular and Electronic Structure of the Thiohetero Anion [S2WS2CoS2WS2]2-

1978 ◽  
Vol 33 (9) ◽  
pp. 978-982 ◽  
Author(s):  
A. Müller ◽  
N. Mohan ◽  
H. Bögge

Abstract The crystal and molecular structure of [(C6H5)4P]2[Co(WS4)2] was determined from single crystal X-ray diffraction data (space group P21/c with a = 18.542(4), b = 15.443(2), c= 18.713(2) Å, β= 108.73(1)°, Z = 4). In the complex anion Co is coordinated by two bidentate chelating WS42- anions, with a nearly tetrahedral surrounding of Co. The bond lengths in the planar metal sulfur ring CoS2W are Co-S = 2.26 Å and W-S = 2.22 Å, while the terminal W-S bonds are 2.14 Å.

2018 ◽  
Vol 6 (2) ◽  
pp. 132-136
Author(s):  
Pramod Kumar Yadav

The title compound azobenzene-4, 4′-dicarbonyl chloride has been synthesized in distilled dichlomethane and characterized by elemental analysis (C, H, N), IR and NMR (1H & 13C) studies. The crystal and molecular structure was further confirmed using single crystal X-ray diffraction analysis. It was crystallized in triclinic crystal system with space group P-1. The centrosymmetrically related molecules held together via C–H---O secondary interaction result in molecular aggregation of the compound.  Int. J. Appl. Sci. Biotechnol. Vol 6(2): 132-136


1977 ◽  
Vol 55 (2) ◽  
pp. 333-339 ◽  
Author(s):  
Colin James Lyne Lock ◽  
Graham Turner

The crystal and molecular structure of the title compound has been examined by single crystal X-ray diffraction. The crystals are monoclinic with a = 28.045(10), b = 8.766(3), c = 12.376(5) Å, β = 91.14(3)°. The space group is C2/c and there are eight molecules per unit cell. A total of 5053 independent reflections, of which 2860 were observed, were examined on a Syntex [Formula: see text] diffractometer. The structure was refined by full matrix least squares to an R2 value of 0.0449. The ligands form a very rough octahedron around the rhenium atom with Re—Cl(1), 2.441(3); Re—Cl(2), 2.366(3), Re—O(1), 1.684(7); Re—O(2), 1.896(6); Re—N(1), 2.144(7); Re—N(2), 2.132(7) Å. The pyridine rings are a dominant factor in determining the details of the molecular structure.


1975 ◽  
Vol 53 (22) ◽  
pp. 3383-3387 ◽  
Author(s):  
Joseph Hubert ◽  
André L. Beauchamp ◽  
Roland Rivest

The crystal and molecular structure of dithiocyanato(triphenylarsine)mercury(II) has been determined from X-ray diffraction data. The crystals are monoclinic, space group P21/c, with a = 10.290(7), b = 21.199(23), c = 10.719(7) Å, β = 112.00(2)°, and Z = 4. The structure has been solved by the heavy-atom method and refined by block-diagonal least-squares calculations. The agreement factor R obtained for 2607 'observed' reflections is 0.030. The crystal consists of single molecules. The 'characteristic' coordination number of mercury is three, with two sulfur and one arsenic atoms at the apexes of a triangle. The nitrogen atoms of the thiocyanate groups are at 2.67 and 2.74 Å from the adjoining mercury atoms and therefore link the different molecules together.


1987 ◽  
Vol 42 (4) ◽  
pp. 395-409 ◽  
Author(s):  
Peter Hofmann ◽  
Helmut Heiß ◽  
Gerhard Müller

Based upon the experimentally known but yet unexplained very different reactivities of the two isoelectronic and isolobal intermediates Pt(PMe3)2 and Pt(PEt3)2, the electronic structure and bonding capability of such 14 electron fragments as a function of their geometry (P-Pt-P angle α, determined by the phosphane cone angle) are investigated using molecular orbital calculations. A decrease of the P-Pt -P angle leads to an exceptionally pronounced energy ascent of the b2-HOMO of Pt(PR3)2 species, which, as a consequence, might lead to unusual reactivity patterns and bonding capabilities of 1,3-diphosphaplatinacyclobutane fragments, for which an extreme electronic situation is enforced by steric constraints. Dichloro[η2-bis(di-r-butylphosphino) methane]platinum(II), Pt(dtbpm)Cl2, is synthesized as a potential precursor of Pt(dtbpm), in order to allow experimental investigations of this taylor made four-membered ring chelate complex of Pt(0). The crystal and molecular structure of Pt(dtbpm)Cl2 · 2 CHCl3 has been determined by X-ray diffraction.


Author(s):  
R. G. Hazell ◽  
G. S. Pawley

AbstractThree-dimensional x-ray diffraction data have been taken from ovalene, C


A complex consisting of one molecule of 5-bromouridine ( BUR ) and one molecule of di­methylsulphoxide ( DMSO ) has been prepared in the form of monoclinic crystals. The unit cell parameters are as follows, a = 13⋅65 ± 0⋅01, b = 4.820 ± 0⋅005, c = 12⋅09 ± 0⋅01 Å, β = 91⋅8 ± 0.1°, space group P 2 1 . X-ray diffraction data ( ⋋ = 1⋅5418 Å) for 1389 independent reflexions were collected and the structure was determined from Patterson syntheses which gave the coordinates of the bromine and sulphur atoms. Fourier syntheses followed by least-squares refinement (including anisotropic temperature parameters) reduced the agreement index R to 0⋅067. The bond lengths and angles for each molecule are given, and it is shown that hydrogen bonds are formed between the oxygen atom of the DMSO molecule and the 03' and 05' of the BUR molecules. A comparison is made between the conformation of the BUR molecule in this complex and that of the same molecule in two other structures.


1980 ◽  
Vol 35 (10) ◽  
pp. 1203-1206 ◽  
Author(s):  
Johannes C. P. M. Lapidaire ◽  
Anthoni J. De Kok

Abstract The crystal and molecular structure of dodecamethyl bisimidotriphosphoramide mono-hydrate (TRIPA • H2O, C12H38N7O4P3) has been determined by single crystal X-ray diffraction techniques. The compound crystallises in the monoclinic system, space group P2i/n with a = 9.236(3), b = 14.016(4), c = 17.534(5) A, β = 97.32(4)°, Z = 4. The building units are dimers of TRIPA • H2O. These units are separated by normal van der Waals distances. The two molecules in the dimer are connected by four hydrogen bridges involving two water molecules. The nitrogen atoms display a nearly planar hybridisation.


1982 ◽  
Vol 37 (10) ◽  
pp. 1230-1233 ◽  
Author(s):  
Günter Schmid ◽  
Roland Boese ◽  
Dieter Bläser

Abstract Tris(dimethylamino)borane, X-ray The crystal and molecular structure of tris(dimethylamino)borane, a liquid at room temperature, has been determined by single-crystal X-ray diffraction methods at - 116°C. The single-crystal growth was accomplished by means of a miniature zone melting process on the diffractometer. The structure data are compared with those of other aminoboranes.


2002 ◽  
Vol 67 (2) ◽  
pp. 228-234 ◽  
Author(s):  
Axel Fischer ◽  
Frank T. Edelmann ◽  
Klaus Jacob ◽  
Ivan Pavlík ◽  
Martin Pavlišta

The heterodinuclear complex [W(CO)5(Me2NCH2Fc)] (Fc = ferrocenyl) (1) resulting from the reaction of [(dimethylamino)methyl]ferrocene (2) and [W(CO)6] was studied by single-crystal X-ray diffraction. Its molecular structure confirms the coordination of the amine nitrogen in 2 to tungsten (d(W-N) = 2.359(5) Å) and reveals its trans-influence in the W(CO)5 moiety. The structure is discussed in relation to several previously referred spectroscopic (IR, UV-VIS, 13C NMR) data.


1996 ◽  
Vol 49 (11) ◽  
pp. 1253 ◽  
Author(s):  
EJ Ditzel ◽  
KD Griffiths ◽  
GB Robertson

The structure of mer-cis-(PEt2Ph)2(PPri3)H-trans-Cl2IrIII (4) has been determined by single-crystal X-ray diffraction analysis. Crystals are monoclinic, space group P21/c, with a 11.607(1), b 21.553(1), c 14.066(1) Ǻ, β 109.04(1)? and Z 4. Structure refinement by full-matrix least-squares analysis (3244 unique reflections, 316 parameters) converged with R 0.034 and Rw 0.041. The PEt2Ph ligands are similarly disposed to their PMe2Ph counterparts in mer-cis-(PEt2Ph)2(PPri3)H-trans-Cl2IrIII (2) but the PPri3 ligands are differently oriented and differently configured. Metal-ligand distances [ Ir -P(1,2,3) 2.333(2), 2.404(2), 2.368(2) Ǻ; Ir-Cl (1,2) 2.388(2), 2.400(2) Ǻ] are all within c. 0.02 Ǻ of those in (2). The P-Ir -P(trans) angle is 155.3(1)°.


Sign in / Sign up

Export Citation Format

Share Document