The crystal and molecular structure of a 1:1 complex of 5-bromouridine and dimethylsulphoxide

A complex consisting of one molecule of 5-bromouridine ( BUR ) and one molecule of di­methylsulphoxide ( DMSO ) has been prepared in the form of monoclinic crystals. The unit cell parameters are as follows, a = 13⋅65 ± 0⋅01, b = 4.820 ± 0⋅005, c = 12⋅09 ± 0⋅01 Å, β = 91⋅8 ± 0.1°, space group P 2 1 . X-ray diffraction data ( ⋋ = 1⋅5418 Å) for 1389 independent reflexions were collected and the structure was determined from Patterson syntheses which gave the coordinates of the bromine and sulphur atoms. Fourier syntheses followed by least-squares refinement (including anisotropic temperature parameters) reduced the agreement index R to 0⋅067. The bond lengths and angles for each molecule are given, and it is shown that hydrogen bonds are formed between the oxygen atom of the DMSO molecule and the 03' and 05' of the BUR molecules. A comparison is made between the conformation of the BUR molecule in this complex and that of the same molecule in two other structures.

Author(s):  
A. Whitaker

AbstractThe crystal and molecular structure of C.I. Pigment Red 2, l′-(2,5-dichlorophenyl)azo-2′-hydroxy-3′-phenylamidonaphthalene has been determined by x-ray diffraction techniques. It crystallizes in the monoclinic system with cell parametersThe hydrogen atoms have been found and included but not refined. The final residual is 15.3%. The molecule is probably in the form of the hydrazone tautomer. The intramolecular hydrogen bonds keep most of the molecule approximately planar while it appears that the remainder is held in the same plane due to steric hinderence between the molecules. The molecules are packed in columns with alternate molecules antiparallel and are linked by van der Waals forces.


2017 ◽  
Vol 81 (4) ◽  
pp. 917-922
Author(s):  
Peter Elliott

AbstractThe crystal structure of the copper aluminium phosphate mineral sieleckiite, Cu3Al4(PO4)2 (OH)12·2H2O, from the Mt Oxide copper mine, Queensland, Australia was solved from single-crystal X-ray diffraction data utilizing synchrotron radiation. Sieleckiite has monoclinic rather than triclinic symmetry as previously reported and is space group C2/m with unit-cell parameters a = 11.711(2), b = 6.9233(14), c = 9.828(2) Å, β = 92.88(3)°, V = 795.8(3) Å3and Z = 2. The crystal structure, which has been refined to R1 = 0.0456 on the basis of 1186 unique reflections with Fo > 4σF, is a framework of corner-, edge- and face- sharing Cu and Al octahedra and PO4 tetrahedra.


2011 ◽  
Vol 34 (5-6) ◽  
pp. 127-130 ◽  
Author(s):  
Yaya Sow ◽  
Libasse Diop ◽  
Kieran C. Molloy ◽  
Gabrielle Kociok-Köhn

Abstract The title compounds [R2NH2][C2O4SnMe3](R=i-Bu, Cy), in which tin atoms adopt a distorted trigonal bipyramidal configuration, have been prepared and submitted to an X-ray diffraction study. These compounds have been obtained from the reaction of (Cy2NH2)2C2O4·H2O or (i-Bu2NH2)2C2O4 with SnMe3Cl. In both [R2NH2][C2O4SnMe3] compounds, the trans complex has an almost regular trigonal bipyramidal geometry around the tin atom. The SnMe3 residues are connected as a chain with bridging oxalate anions in a trans-SnC3O2 framework, the oxygen atoms being in axial positions. The cations connect linear adjacent chains through NH…O hydrogen bonds giving layered structures.


2013 ◽  
Vol 28 (1) ◽  
pp. 13-17 ◽  
Author(s):  
F. Laufek ◽  
A. Vymazalová ◽  
D.A. Chareev ◽  
A.V. Kristavchuk ◽  
J. Drahokoupil ◽  
...  

The (Ag,Pd)22Se6 phase was synthesized from individual elements by silica glass tube technique and structurally characterized from powder X-ray diffraction data. The (Ag,Pd)22Se6 phase crystallizes in Fm$\overline3$m symmetry, unit-cell parameters: a = 12.3169(2) Å, V = 1862.55(5) Å3, Z = 4, and Dc = 10.01 g/cm3. The crystal structure of the (Ag,Pd)22Se6 phase represents a stuffed 3a.3a.3a superstructure of the Pd structure (fcc), where only 4 from 108 available octahedral holes are occupied. Its crystal structure is related to the Cr23C6 structure type.


2015 ◽  
Vol 71 (9) ◽  
pp. 1189-1193 ◽  
Author(s):  
Yoshiki Aikawa ◽  
Hiroshi Kida ◽  
Yuichi Nishitani ◽  
Kunio Miki

Proper protein folding is an essential process for all organisms. Prefoldin (PFD) is a molecular chaperone that assists protein folding by delivering non-native proteins to group II chaperonin. A heterohexamer of eukaryotic PFD has been shown to specifically recognize and deliver non-native actin and tubulin to chaperonin-containing TCP-1 (CCT), but the mechanism of specific recognition is still unclear. To determine its crystal structure, recombinant human PFD was reconstituted, purified and crystallized. X-ray diffraction data were collected to 4.7 Å resolution. The crystals belonged to space groupP21212, with unit-cell parametersa= 123.2,b= 152.4,c= 105.9 Å.


Author(s):  
Peter-Thomas Naumann ◽  
Charles T. Lauhon ◽  
Ralf Ficner

The sulfurtransferase 4-thiouridine synthetase (ThiI) is involved in the ATP-dependent modification of U8 in tRNA. ThiI fromThermotoga maritimawas cloned, overexpressed and purified. A complex comprising ThiI and a truncated tRNA was prepared and crystallized, and X-ray diffraction data were collected to a resolution of 3.5 Å. The crystals belonged to the orthorhombic space groupP212121, with unit-cell parametersa= 102.9,b= 112.8,c= 132.8 Å.


1987 ◽  
Vol 2 (4) ◽  
pp. 225-226
Author(s):  
Peter Bayliss ◽  
Slade St. J. Warne

AbstractMagnesium-chlorophoenicite may be differentiated from the Mn-analogue chlorophoenicite, because for magnesium-chlorophoenicite at 7Å, whereas for chlorophoenicite.In a review of the literature for the Mineral Powder Diffraction File by Bayliss et al. (1980), powder X-ray diffraction data could not be found of the mineral species magnesium-chlorophoenicite, (Mg,Mn)3Zn2(AsO4)(OH,O)6. Dunn (1981) states that the powder X-ray diffraction data of magnesium-chlorophoenicite is essentially identical to that of chlorophoenicite (Mn analogue) and confirms that the minerals are isostructural.With the crystal structure parameters determined by Moore (1968) for a Harvard University specimen from New Jersey of chlorophoenicite, a powder X-ray diffraction pattern was calculated with the programme of Langhof, Physikalische Chemie Institute, Darmstadt. The calculated pattern was used to correct and complete the indexing of the powder X-ray diffraction data of chlorophoenicite specimen ROM M15667 from Franklin, Sussex County, New Jersey, U.S.A. by the Royal Ontario Museum (PDF 25-1159). With the correctly indexed data of ROM M15667, the unitcell parameters were refined by least-squares analysis and are listed in Table 1.The most magnesium-rich magnesium-chlorophoenicite found in the literature is a description of Harvard University specimen 92803 from Franklin, Sussex County, New Jersey, U.S.A. by Dunn (1981), where Mg is slightly greater than Mn. A 114.6 mm Debye-Schemer film taken of HU92803 with Cu radiation and a Ni filter (CuKα = 1.5418Å) was obtained from Dr. P. Dunn and measured visually. The unit-cell parameters, which were refined by least-squares analysis starting from the unit-cell parameters of PDF 25-1159 in space group C2/m(#12), are listed in Table 1, and give F28 = 4.1(0.050,136) by the method of Smith & Snyder (1979).The hkl, dcalulated, dobserved and relative intensities (I/I1) of HU92803 are presented in Table 2. With the atomic positions and temperature factors of chlorophoenicite determined by Moore (1968), the Mn atomic positions occupied by 50% Mg and 50% Mn, and the unit-cell parameters of HU92803, a powder X-ray diffraction pattern was calculated and Icalculated is recorded in Table 2. A third powder X-ray diffraction pattern was calculated with the Mn atomic positions fully occupied by Mg. Because the atomic scattering factor of Mn is more than twice greater than Mg, chlorophoenicite may be differentiated from magnesium-chlorophoenicite based upon the calculated intensities of the first three reflections given in Table 3.Although the a, c and β unit-cell parameters of chlorphoenicite are similar to those of magnesium-chlorphoenicite, the b unit-cell parameter of chlorophoenicite is significantly greater than that of magnesium-chlorophoenicite (Table 1). The b unit-cell parameter represents the 0–0 distance of the Mn octahedra (Moore, 1968). Since the size of Mn is greater than that of Mg, chlorophoenicite may be differentiated from magnesium-chlorophoenicite based upon the b unit-cell parameter given in Table 1.American Museum of Natural History (New York, N.Y., U.S.A.) specimen 28942 from Sterling Hill, Ogdensburg, New Jersey is composed of willemite, haidingerite and magnesian chlorophoenicite. A spectrographic analysis of the magnesian chlorophoenicite shows As, Mg, Mn and Zn. Powder X-ray diffraction data (PDF 34-190) of the magnesian chlorophoenicite was collected by diffractometer with Cu radiation and a graphite 0002 monochromator (Kα1 = 1.5405) at a scanning speed of 0.125° 2θ per minute. The unit-cell parameters, which were refined by leastsquares analysis starting from the unit-cell parameters of PDF 25-1159, are given in Table 1. Specimen AM 28942 is called chlorophoenicite, because of its large b unit-cell parameter (Table 1), and the I/I1 of 25 for reflection 001 and of 50 for reflection 201 compared to the Icalculated in Table 3.


1996 ◽  
Vol 11 (1) ◽  
pp. 7-8 ◽  
Author(s):  
Hee-Lack Choi ◽  
Nobuo Ishizawa ◽  
Naoya Enomoto ◽  
Zenbe-e Nakagawa

X-ray powder-diffraction data for Pb2(C2O4)(NO3)2·2H2O were obtained. The crystal system was determined to be monoclinic. The unit-cell parameters were refined to a=10.613(2) Å, b=7.947(2) Å, c=6.189(1) Å, and β=104.48(2)°.


Author(s):  
Janice A. Frias ◽  
Brandon R. Goblirsch ◽  
Lawrence P. Wackett ◽  
Carrie M. Wilmot

OleC, a biosynthetic enzyme involved in microbial hydrocarbon biosynthesis, has been crystallized. Synchrotron X-ray diffraction data have been collected to 3.4 Å resolution. The crystals belonged to space groupP3121 orP3221, with unit-cell parametersa=b= 98.8,c= 141.0 Å.


1998 ◽  
Vol 13 (4) ◽  
pp. 246-248 ◽  
Author(s):  
Nubuo Ishizawa ◽  
Atsushi Saiki ◽  
Kyoji Ohdan ◽  
Mamoru Ai

X-ray powder-diffraction data were collected for a new iron phosphate, Fe(PO4)·0.5H2O, obtained by reducing FePO4 with oxalic acid at 220 °C in the presence of water vapor and oxygen. The crystal system was determined to be orthorhombic with unit-cell parameters a=15.991(6) Å, b=20.156(7) Å, and c=7.223(2) Å.


Sign in / Sign up

Export Citation Format

Share Document