Die Kristallstruktur des Antimonfluoridchlorids SbCl4 +[Sb2F10,5Cl0,5]— / The Crystal Structure of the Antimony Fluoride Chloride SbCl4+[Sb2F10,5Cl0,5]-

1979 ◽  
Vol 34 (5) ◽  
pp. 681-684 ◽  
Author(s):  
Ulrich Müller

Compounds with the composition SbCl4+[Sb2F11-sCls]- with 0 ≤ s ≤ 2 can be obtained from SbF5/SbCl5 mixtures. The title compound is one of them. Its crystal structure was determined with X-ray diffraction data and was refined to a residual index of R = 0.052. It is isotypic to the compounds with s = 0 and s = 2, crystallizing in the space group P21/n with a = 1103, b = 1055, c = 1290 and β = 95,9°. In the anion [F4(F1-uClu)Sb-F-Sb(F1-vClv)F4]- two ligand positions that are cis to the bridging F atom are statistically occupied by fluorine and chlorine, with u = 0,1 and v = 0,4. The tetrahedral SbCl4+ ion is coordinated to the anion so that on top of each of the tetrahedron faces there is one F atom at a distance of 298 to 335 pm.

Author(s):  
P. C. Christidis ◽  
I. A. Tossidis ◽  
C. A. Hondroudis

AbstractThe crystal structure of the title compound has been determined from three-dimensional X-ray diffraction data. The crystals are triclinic, space group


2020 ◽  
Vol 75 (8) ◽  
pp. 765-768
Author(s):  
Bohdana Belan ◽  
Dorota Kowalska ◽  
Mariya Dzevenko ◽  
Mykola Manyako ◽  
Roman Gladyshevskii

AbstractThe crystal structure of the phase Ce5AgxGe4−x (x = 0.1−1.08) has been determined using single-crystal X-ray diffraction data for Ce5Ag0.1Ge3.9. This phase is isotypic with Sm5Ge4: space group Pnma (No. 62), Pearson code oP36, Z = 4, a = 7.9632(2), b = 15.2693(5), c = 8.0803(2) Å; R1 = 0.0261, wR2 = 0.0460, 1428 F2 values and 48 variables. The two crystallographic positions 8d and 4c show Ge/Ag mixing, leading to a slight increase in the lattice parameters as compared to those of the pure binary compound Ce5Ge4.


2004 ◽  
Vol 68 (5) ◽  
pp. 757-767 ◽  
Author(s):  
T. Mihajlović ◽  
H. Effenberger

AbstractHydrothermal synthesis produced the new compound SrCo2(AsO4)(AsO3OH)(OH)(H2O). The compound belongs to the tsumcorite group (natural and synthetic compounds with the general formula M(1)M(2)2(XO4)2(H2O,OH)2; M(1)1+,2+,3+ = Na, K, Rb, Ag, NH4, Ca, Pb, Bi, Tl; M(2)2+,3+ = Al, Mn3+, Fe3+, Co, Ni, Cu, Zn; and X5+,6+ = P, As, V, S, Se, Mo). It represents (1) the first Sr member, (2) the until now unknown [7]-coordination for the M(1) position, (3) the first proof of (partially) protonated arsenate groups in this group of compounds, and (4) a new structure variant.The crystal structure of the title compound was determined using single-crystal X-ray diffraction data. The compound is monoclinic, space group P21/a, with a = 9.139(2), b = 12.829(3), c = 7.522(2) Å, β = 114.33(3)°, V = 803.6(3) Å3, Z = 4 [wR2 = 0.065 for 3530 unique reflections]. The hydrogen atoms were located experimentally.


1985 ◽  
Vol 40 (1) ◽  
pp. 13-18 ◽  
Author(s):  
Kay Jansen ◽  
Kurt Dehnicke ◽  
Dieter Fenske

The syntheses and IR spectra of the complexes [Mo2(O2C-Ph)4X2]2⊖ with X = N3, CI, Br and the counter ion PPh4⊕ are reported. The azido and the bromo complexes are obtained from a solution of [Mo2(O2CPh)4] with PPh4N3 in pyridine or by reaction with PPh4Br in CH2Br2, respectively. When (PPh4)2[Mo2(O2CPh)4(N3)2] is dissolved in CH2Cl2, nitrogen is evolved and the complex with X = CI is obtained. The crystal structure of (PPh4)2[Mo2(O2CPh)4Cl2] · 2CH2Cl2 was determined from X-ray diffraction data (5676 observed independent reflexions, R = 0.042). It crystallizes in the monoclinic space group P21/n with four formula units per unit cell; the lattice constants are a = 1549, b = 1400, c = 1648 pm, β = 94.6°. The centrosymmetric [Mo2(O2CPh)4Cl2]2⊖ ion has a rather short Mo-Mo bond of 213 pm, whereas the MoCl bonds are very long (288 pm)


Author(s):  
P. Bayliss ◽  
N. C. Stephenson

SummaryThe crystal structure of gersdorffite (III) has been examined with three-dimensional Weissenberg X-ray diffraction data. The unit cell is isometric with a 5·6849 ± 0·0003 Å, space group PI, and four formula units per cell. This structure has the sulphur and arsenic atoms equally distributed over the non-metal atom sites of pyrite. All atoms show significant random displacements from the ideal pyrite positions to produce triclinic symmetry, which serves to distinguish this mineral from a disordered cubic gersdorffite (II) and a partially ordered cubic gersdorffite (I). Factors responsible for the atomic distortions are discussed.


1990 ◽  
Vol 43 (12) ◽  
pp. 2083 ◽  
Author(s):  
DC Craig ◽  
VJ James ◽  
JD Stevens

The crystal structure of the title compound (1) has been determined by X-ray diffraction. Crystals of (1) are orthorhombic, space group P21212 with a 11.425(1), b 24.916(1), c 5.8952(3)Ǻ, Z 4. Refinement on 1675 observed reflections measured with Cu Kα radiation converged at R 0.034. The seven- membered ring adopts a boat conformation in which the pseudo plane of symmetry passes through the ring oxygen.


1983 ◽  
Vol 36 (5) ◽  
pp. 1043 ◽  
Author(s):  
RM Carman ◽  
E Horn ◽  
CHL Kennard ◽  
G Smith ◽  
MR Snow ◽  
...  

The crystal structure of (1S,3S,4R)-1,3,8-tribromo-p-menthan-2-one has been determined from X-ray diffraction data and refined to a final residual of 0.075 for 635 'observed' reflections. Crystals are orthorhombic, of space group P212121 with four molecules in a cell of dimensions a 15.248(3), b 12.189(3), c 7.201(2) �. The analysis confirms that the molecule exists in a distorted twist-boat conformation.


1973 ◽  
Vol 28 (7-8) ◽  
pp. 426-428 ◽  
Author(s):  
Ulrich Müller

CH3HgN3 crystallizes in the space group P21/c with four molecules per unit cell. The structure was solved by common crystallographic methods using X-ray diffraction data that were collected at a temperature of 100°K. The cooling was necessary to limit the radiation damage of the crystals. The molecules possess an essentially linear C-Hg-N group; in the crystals they are associated to layers bearing the methyl groups on their outer side.


1976 ◽  
Vol 29 (9) ◽  
pp. 1905 ◽  
Author(s):  
CL Raston ◽  
AH White ◽  
SB Wild

The crystal structure of the title compound has been determined by direct methods from X-ray diffraction data and refined by least squares to a residual of 0.071 for 2647 'observed' reflections. Crystals are monoclinic, C2/c, a = 36.81(1), b = 11.181(2), c = 20.369(5) �, β = 95.28(3)�, Z = 32. There are four independent molecules in the asymmetric unit, all with the cis disposition of ligands (<Fe-Hg), 2.498 �; <Hg-Fe-Hg), 80.9�); in one of the molecules one of the carbonyl sites is occupied by a more substantial moiety, possibly a result of partial occupancy of HgCl as a result of disorder or decomposition.


1981 ◽  
Vol 36 (2) ◽  
pp. 135-137 ◽  
Author(s):  
Evamarie Hey ◽  
Ulrich Müller

The crystal structure of [MePh3P]2TiCl6 was determined from X-ray diffraction data and refined to a residual index of R = 0.065. It crystallizes in the space group P2i/n with two formula units per unit cell; the cell dimensions are a - 921, b = 1314, c = 1648 pm and y - 100.87°. The TiCl62- ion occupies an inversion center and has the shape of a slightly distorted octahedron with Ti-Cl distances between 233 and 235 pm.


Sign in / Sign up

Export Citation Format

Share Document