Synthese und absolute Konfiguration kettenverzweigter, Cimetidin-analoger Thioether / Synthesis and Absolute Configuration of Chain Branched Cimetidine Analogous Thioethers

1987 ◽  
Vol 42 (3) ◽  
pp. 348-354 ◽  
Author(s):  
Sigurd Elza ◽  
Martin Dräger ◽  
Walter Schunack

Chain branched Cimetidine analogous thioethers, promising building blocks for the preparation of H2-histaminergic compounds, were synthetized from chiral aminoalkanethiols. Enantiomerically pure amino acids or aminoalcohols were used as starting materials. In one case, a resolution via neutral and acid di-O-(4-toluoyl)tartrates was achieved in good yields and satisfying enantiomeric excess. The absolute configuration of an ethyl branched compound was determined using X-ray diffraction and anomalous dispersion

Author(s):  
Sosale Chandrasekhar

The origins of the molecular-chiral homogeneity that is the very basis of life remain a tantalizing mystery. Molecular chirality itself is manifest in its interaction with radiation, particularly as optical activity, although an intriguing alternative technique based in X-ray crystallography is being increasingly employed. Thus, X-ray diffraction with anomalous dispersion is currently believed to lead to the absolute configuration of a stereogenic center, the ultimate goal of structural chemistry. However, despite its apparently unerring consistency, the fundamental basis of the anomalous dispersion technique is itself enigmatic. This is because it is unclear how the technique not only distinguishes two enantiomeric lattices but also assigns the absolute configuration: all, apparently, in the absence of an external chiral influence! Indeed, as argued previously, it is highly likely that the technique succeeds because the X-rays employed are circularly polarized, itself a possible consequence of parity violation. All the same, the question of how the absolute configuration is assigned remains, as the chiral sense of the putative circular polarization of the X-rays is unknown. It is argued herein that the anomalous dispersion method is essentially based in the chirality of X-rays that must have entered–although unbeknownst as such–into the calculations leading to the absolute configuration. In fact, the enigma surrounding the anomalous dispersion method derives from uncertainties concerning the theory of X-ray diffraction itself, thus leading to the apparently inescapable conclusion that both methods are essentially empirical — but without detracting from the brilliance of the scientific achievements that led to these methods.          


1982 ◽  
Vol 47 (11) ◽  
pp. 2912-2921 ◽  
Author(s):  
Patricia Sierra ◽  
Ladislav Novotný ◽  
Zdeněk Samek ◽  
Miloš Buděšínský ◽  
Ladislav Dolejš ◽  
...  

From the endemic Cuban species Rauvolfia salicifolia GRISEB nine alkaloids were isolated of which the following seven had been already described: (+)-ajmalidine (I), (-)-reserpiline (II), (-)-isoreserpiline (III), (-)-isocarapanaubine (IV), (-)-ajmalicine (V), (+)-vellosimine (VI), and (+)-yohimbine (VII). The structure of (-)-raucubaine (VIII) had been previously determined by X-ray diffraction and the structure of the alkaloid (-)-raucubainine (IX) was suggested on the basis of its conversion to (-)-raucubaine (VIII). The absolute configuration of (-)-raucubaine and (-)-raucubainine was elucidated by CD spectroscopy.


2014 ◽  
Vol 9 (9) ◽  
pp. 1934578X1400900 ◽  
Author(s):  
Juan D. Hernández-Hernández ◽  
Hugo A. García-Gutiérrez ◽  
Luisa U. Román-Marín ◽  
Yunuen I. Torres-Blanco ◽  
Carlos M. Cerda-García-Rojas ◽  
...  

The stems of Bursera multijuga afforded (-)-(1 S,3 E,7 R,8 R,11 E)-7,8-epoxycembra-3,11-dien-1-ol (1) and its acetate 2, together with cembrene A (3), nephthenol (4), and cembrenol (5). The structures of 1 and 2 were elucidated by 1D and 2D NMR, HRESIMS, and X-ray diffraction. The conformational preference of flexible 1 was studied by molecular modeling at the DFT B3LYP/DGDZVP level of theory. Good agreement between calculated and experimental vibrational circular dichroism curves established the absolute configuration of 1. This is the first time that cembrane derivatives have been isolated from the genus Bursera.


1986 ◽  
Vol 51 (4) ◽  
pp. 903-929 ◽  
Author(s):  
Miroslav Holub ◽  
Miloš Buděšínský ◽  
Zdenka Smítalová ◽  
David Šaman ◽  
Urszula Rychłewska

On the basis of spectroscopic, particularly 1H NMR data, isosilerolide was assigned structure I, including the absolute configuration. The structure was confirmed by X-ray diffraction. Isosilerolide represents a new stereoisomeric type of natural eudesmanolides, characterized as 5βH, 6αH, 7αH, 10αCH3-eudesman-6,12-olide. As shown by the chemical correlation of isosilerolide (I) with silerolide (III) and lasolide (X), the latter two natural lactones belong to this stereoisomeric group of eudesmanolides. Analysis of models and 1H NMR data shows that structures of some eudesman-6,12-olides, published by other authors, should be corrected.


2001 ◽  
Vol 79 (5-6) ◽  
pp. 1019-1025 ◽  
Author(s):  
Jason A Wiles ◽  
Steven H Bergens ◽  
Victor G Young, Jr

Reaction of [Ru((R)-BINAP)(H)(MeCN)n(acetone)3–n](BF4) (where n = 0–3) (2) with 1 equiv of the olefin substrate methyl α-acetamidoacrylate (MAA) in acetone at room temperature immediately generated a mixture (72:28) of two diastereomers of the complex [Ru((R)-BINAP)(MeCN)(MAA(H))](BF4) (3). The olefin–hydride insertion reaction between 2 and MAA to generate 3 was regioselective, with transfer of the hydride to the β-olefinic carbon and transfer of ruthenium to the α-carbon in both diastereomers of 3. The two diastereomers of 3 differ by the absolute configuration at the α-carbon of MAA(H) ((SCα)-3 and (RCα)-3). The absolute configuration of the major ((SCα)-3) diastereomer was determined by X-ray diffraction in conjunction with NMR spectroscopic data. Protonolysis of the ruthenium–carbon bond in 3 and in the methyl α-acetamidocinnamate (MAC) analog ([Ru((R)-BINAP)(MeCN)((S)- MAC(H))](BF4) ((SCα)-4)) by addition of 2 equiv HBF4·Et2O in CH2Cl2 at room temperature was not stereospecific and did not occur with β-hydride elimination from the methyl or benzyl groups.Key words: ruthenium, BINAP, enantioselective, hydrogenation, catalysis.


Sign in / Sign up

Export Citation Format

Share Document