1.3-Dithienium-and 1.3-Dithiolenium Salts, VI ,13C NMR Spectroscopic Investigations on 2-Substituted 1,3-Dithian-2-ylium Cations. Unusual γ-Effects

1997 ◽  
Vol 52 (6) ◽  
pp. 757-761 ◽  
Author(s):  
Hans-Otto Kalinowski ◽  
Ingfried Stahl

Abstract The 13C NMR chemical shifts of 19 2-substituted 1,3-dithian-2-ylium-tetrafluorborates 1a-1s are discussed in comparison to known analogous 1,3-dithianes and 2-lithio-1,3-dithianes. The unusual γ-effects (up to 9 ppm), which can also observed in other six-membered ring systems, are explained by the electric field effect (σ-polarisation effect). The electron density distribution can be estimated qualitatively by comparison with the 1,3-dioxan-2-ylium-and cyclohexylcations.

1971 ◽  
Vol 49 (9) ◽  
pp. 1335-1338 ◽  
Author(s):  
J. W. ApSimon ◽  
H. Beierbeck ◽  
D. K. Todd ◽  
P. V. Demarco ◽  
W. G. Craig

The calculation of chemical shift values by the method used in parts I–V (1–5) has been extended to a derivation of the shielding effects of the ethylene–ketal and −thioketal groups. For these studies ketal and thioketal derivatives of monoketoandrostanes were prepared. The chemical shifts of the C-18 and -19 methyl protons in these compounds are reported for the solvents CDCl3, CCl4 and benzene.Representing both groups by point dipoles, values for the anisotropies and for K, a parameter descriptive of the electric field effect, were derived for various, coincidental, locations of the magnetic and electric dipoles along the symmetry axes of the two groups.


1968 ◽  
Vol 46 (24) ◽  
pp. 3813-3820 ◽  
Author(s):  
G. K. Hamer ◽  
W. F. Reynolds

Vinyl proton chemical shifts of styrene and six 4-substituted styrenes have been determined at infinite dilution in cyclohexane. It is shown that changes in the chemical shift difference of the β protons, Δ(δC − δB) can be accounted for by electric field effects. Reasonable values of the constant in the Buckingham equation of(−3.11 ± 0.50) × 10−12 and (−4.77 ± 0.83) × 10−12 are obtained from two different types of field effect calculations. Residual chemical shift changes for β protons after correction for electric field effects can be explained in terms of mesomeric and possibly inductive mechanisms. α-Proton chemical shift values cannot be satisfactorily rationalized. Small concentration effects are noted, usually resulting in high field shifts with increasing concentration. Previous results are reexamined in order to resolve a conflict in the literature.


1988 ◽  
Vol 53 (3) ◽  
pp. 588-592 ◽  
Author(s):  
Antonín Lyčka ◽  
Josef Jirman ◽  
Jaroslav Holeček

The 17O and 13C NMR spectra of eight geminal diacetates RCH(O(CO)CH3)2 derived from simple aldehydes have been measured. In contrast to the dicarboxylates R1R2E(O(CO)R3)2, where E = Si, Ge, or Sn, whose 17O NMR spectra only contain a single signal, and, on the other hand, in accordance with organic carboxylic esters, the 17O NMR spectra of the compound group studied always exhibit two well-resolved signals with the chemical shifts δ(17O) in the regions of 183-219 ppm and 369-381 ppm for the oxygen atoms in the groups C-O and C=O, respectively.


1990 ◽  
Vol 55 (8) ◽  
pp. 2027-2032 ◽  
Author(s):  
Jan Schraml ◽  
Robert Brežný ◽  
Jan Čermák

29Si and 13C NMR spectra of five 4-substituted 2,6-dimethoxytrimethylsiloxybenzenes were studied with the aim to elucidate the nature of the deshielding proximity effects observed in the spectra of ortho substituted trimethylsiloxybenzenes. The sensitivity of 29Si chemical shifts to para substitution is in the studied compounds essentially the same as in mono ortho methoxytrimethylsiloxybenzenes. The deshielding proximity effect of the ìsecondî methoxy group is somewhat smaller than that of the ìfirstî group. The present results indicate that the two methoxy groups assume coplanar conformations with the benzene ring and are turned away from the trimethylsiloxy group which is not in the benzene plane. It is argued that in mono ortho methoxytrimethylsiloxybenzenes the two substituent groups adopt the same conformations as in the compounds studied here.


2021 ◽  
Vol 118 (16) ◽  
pp. 162110
Author(s):  
Yujie Quan ◽  
Sheng-Ying Yue ◽  
Bolin Liao

Sign in / Sign up

Export Citation Format

Share Document