Formation and Structural Characterization of [RuCl2(CO)2(SPh2)2], [RuCl2(CO)3(OH2)], and [Ru(OH2)6][RuCl3(CO)3]2 · 2H2O

2003 ◽  
Vol 58 (10) ◽  
pp. 959-964 ◽  
Author(s):  
Marjaana Taimisto ◽  
Raija Oilunkaniemi ◽  
Risto S. Laitinen ◽  
Markku Ahlgrén

While the room temperature reaction of [RuCl2(CO)3]2 and Ph2S in tetrahydrofuran in air affords [RuCl2(CO)2(SPh2)2] (1) in moderate yield, that in dichloromethane results in the formation of a mixture of [RuCl2(CO)3(H2O)] (2) and [Ru(H2O)6][RuCl3(CO)3]2·2H2O (3). Very small amounts of 1 are produced only upon prolonged reflux of the reagents. All compounds were characterized by X-ray crystallography. 1 crystallizes as discrete octahedral cis(CO), cis(Cl), trans(Ph2S) complexes, which are joined into stacks by weak H···Cl hydrogen bonds. 2 is also composed of discrete octahedral complexes. Four hydrogen bonds involving aqua and chlorido ligands link two complexes into a dimer. The structure of 3 consists of octahedral hexaaquaruthenium cations and two tricarbonyltrichloridoruthenate anions. The water of crystallization is involved in hydrogen bonding between the cations and anions resulting in the formation of a continuous three-dimensional network.

1997 ◽  
Vol 53 (2) ◽  
pp. 262-271 ◽  
Author(s):  
Q. Li ◽  
T. C. W. Mak

Air-sensitive selenourea inclusion complexes tetraethylammonium chloride–selenourea (1/2), (C2H5)4N+.C1−.2[(NH2)2CSe] (1), tetra-n-propyl-ammonium chloride–selenourea (1/3), (n-C3H7)4N+.C1−.3[(NH2)2CSe] (2), tetra-n-propylammonium bromide–selenourea (1/3), (n-C3H7)4N+.Br−.3[(NH2)2CSe] (3), and tetra-n-propylammonium iodide–selenourea (1/1), (n-C3H7)4N+.I−.(NH2)2CSe (4), have been prepared and characterized by X-ray crystallography. Crystal data, Mo Kα radiation: (1), space group P21/n, Z = 4, a = 8.768 (5), b = 11.036 (6), c = 19.79 (1) Å, β = 96.92 (1)°, R F = 0.055 for 1468 observed data; (2), space group Cc, Z = 4, a = 18.091 (4), b = 13.719 (3), c = 11.539 (2) Å, β = 111.93 (3)°, R F = 0.051 for 1187 observed data; (3), space group Cc, Z = 4, a = 18.309  (4), b = 13.807 (3), c = 11.577 (2) Å, β = 112.45 (3)°, R F = 0.049 for 1592 observed data; (4), space group P21/n, Z = 4, a = 8.976 (1), b = 14.455 (2), c = 15.377 (3) Å, β = 94.16(1)°, R F = 0.062 for 1984 observed data. In the crystal structure of (1) the parallel alternate arrangement of selenourea–chloride ribbons and selenourea chains generates a puckered layer and the cations are sandwiched between them. In the isomorphous complexes (2) and (3) wide selenourea–halide double ribbons are crosslinked by bridging selenourea molecules via N—H...Se and N—H...X hydrogen bonds [average N...Se = 3.521 (8) and 3.527 (7), N...Cl = 3.354 (8) and N...Br = 3.500 (7) Å in (2) and (3), respectively] to form a channel-like three-dimensional network and the cations are accommodated in a single column within each channel. In the crystal structure of (4) the selenourea molecules are joined in the shoulder-to-shoulder fashion via N—H...Se hydrogen bonds [N...Se = 3.529 (7) and 3.534 (7) Å] to generate a ribbon and each selenourea molecule also forms a pair of chelating N—H...I hydrogen bonds [N...I = 3.567 (7) and 3.652 (7) Å] to an adjacent iodide ion.


2000 ◽  
Vol 53 (3) ◽  
pp. 237 ◽  
Author(s):  
Andrew B. Hughes ◽  
Maureen F. Mackay ◽  
Luigi Aurelio

The solid-state conformation of racemic N-methylglutamic acid has been defined by single-crystal X-ray crystallography. Orthorhombic crystals belong to the space group Pbca with a 15.219(2), b 10.583(1), c 9.595(1) Å and Z 8. The structure was refined to a final R value of 0.049 for the 1285 measured data. In the crystal the molecules adopt a zwitterionic form with protonation having occurred at the amino nitrogen atom. The a-carboxyl is unprotonated with the d-carboxy group retaining a proton. The i.r. spectrum shows absorptions which also are indicative of the amino acid being in the zwitterionic form. Intermolecular H-bonds involving the carboxylate proton and the two protons on the N-atom link the molecules into a three-dimensional network in the crystal.


2007 ◽  
Vol 2007 ◽  
pp. 1-7 ◽  
Author(s):  
Labrini Drakopoulou ◽  
Constantina Papatriantafyllopoulou ◽  
Aris Terzis ◽  
Spyros P. Perlepes ◽  
Evy Manessi-Zoupa ◽  
...  

The 12: 1 reaction of urea (U) with CoI2in EtOH yielded the “clathrate-coordination” compound[CoU6]I2·4U (1). The complex crystallizes in the monoclinic space group P21/c. The lattice constants area= 9.844(4),b= 7.268(3),c= 24.12(1) Å, andβ=98.12(1)∘. The crystal structure determination demonstrates the existence of octahedral[CoU6]2+cations,I-counterions, and two different types (twoU1and twoU2) of hydrogen-bonded, lattice urea molecules. The[CoU6]2+cations and theU1lattice molecules form two-dimensional hydrogen-bonded layers which are parallel to theabplane. TheI-anions are placed above and below each layer, and are hydrogen bonded both toU1molecules and[CoU6]2+cations. EachU2molecule is connected to a[CoU6]2+cation through anN–H⋯Ohydrogen bond resulting in a three-dimensional network. Room temperature magnetic susceptibility and spectroscopic (solid-state UV/Vis, IR, Raman) data of1are discussed in terms of the nature of bonding and the known structure.


2011 ◽  
Vol 66 (5) ◽  
pp. 459-464 ◽  
Author(s):  
Chao Xu ◽  
Sheng-Bo Liu ◽  
Taike Duan ◽  
Qun Chen ◽  
Qian-Feng Zhang

Two novel cadmium coordination polymers, [Cd(pydc)2(tu)]n (1) and [Cd2(SO4)(nic)2(tu)1.5 - (H2O)2]n (2) (pydc = pyridine-2,3-dicarboxylate, nic = nicotinate, tu = thiourea), have been synthesized under hydrothermal conditions and structurally characterized by X-ray diffraction analysis. 1 is a one-dimensional ladder coordination polymer in a two-dimensional network formed by hydrogen bonds. 2 consists of two kinds of Cd(II) centers in different coordination environments connected via nicotinate and sulfate to form a two-dimensional grid network integrated in a three-dimensional framework generated by hydrogen bonds. 2 shows intense fluorescent emission in the solid state at room temperature


Author(s):  
Carsten Wellm ◽  
Christian Näther

The asymmetric unit of the title compound, [Ni(NCS)2(C12H9NO)2(CH3OH)2]·CH3OH, comprises one NiII cation, two thiocyanate anions, two 4-benzoylpyridine coligands, two coordinating, as well as one non-coordinating methanol molecule. The NiII cation is coordinated by two terminally N-bonded thiocyanate anions, the N atoms of two 4-benzoylpyridine coligands and the O atoms of two methanol ligands within a slightly distorted octahedron. Individual complexes are linked by intermolecular O—H...S hydrogen bonding into chains parallel to [010] that are further connected into layers parallel to (10\overline{1}) by C—H...S hydrogen bonds. Additional C—H...O hydrogen-bonding interactions lead to the formation of a three-dimensional network that limits channels extending parallel to [010] in which the non-coordinating methanol molecules are located. They are hydrogen-bonded to the coordinating methanol molecules. X-ray powder diffraction revealed that the compound could not be prepared as a pure phase.


2014 ◽  
Vol 70 (2) ◽  
pp. o134-o135
Author(s):  
David C. McCutcheon ◽  
Peter Norris ◽  
Matthias Zeller

The title compound, C14H18F3NO8, was produced through conjugation of 1,3,4-tri-O-acetyl-2-azidodeoxy-α,β-L-fucose with trifluoroacetyl chloride in the presence of bis(diphenylphosphino)ethane in tetrahydrofuran at room temperature. The X-ray crystal structure reveals that the β-anomer of the product mixture crystallizes from ethyl acetate/hexanes. The compound exists in a typical chair conformation with the maximum possible number of substituents, four out of five, located in the sterically preferred equatorial positions. The major directional force facilitating packing of the molecules are N—H...O hydrogen bonds involving the amide moieties of neighboring molecules, which connect molecules stacked along thea-axis direction into infinite strands with aC11(4) graph-set motif. Formation of the strands is assisted by a number of weaker C—H...O interactions involving the methine and methyl H atoms. These strands are connected through further C—H...O and C—H...F interactions into a three dimensional network


2014 ◽  
Vol 10 (3) ◽  
pp. 2355-2362
Author(s):  
H. Rahmouni ◽  
W. Smirani Sta ◽  
M. Rzaigui

A new zinc complex of formula [C7H10NO]2 ZnCl4 has been prepared and characterized by X-ray diffraction,  IR and UV-Visible spectroscopies. The complex crystallizes in the monoclinic space group P21/n with a minimal tetrahedral distortion of the ZnCl42- ion and with lattice parameters: a =12.054 (2) Å, b =7.129 (3) Å, c =23.480 (2) Å, β = 100.67 (2)°, V = 1983.03 (1) Å3 and Z = 4. The crystal structure was solved and refined to R = 0.080 and RW = 0.227 with 9611 independent reflections. It can be described by organic layers of p-anisidinium cations held together by C-H…O hydrogen bonds parallel to (010) plane, linked to the inorganic groups of ZnCl42- anions through N-H…Cl hydrogen bonds, electrostatic and Van Der Waals interactions, to form a three-dimensional network.


2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
Houda Marouani ◽  
Salem Slayyem Al-Deyab ◽  
Mohamed Rzaigui

Single crystals of [2-CH3CH2C6H4NH3]6P6O18⋅4H2O are synthesized in aqueous solution by the interaction of cyclohexaphosphoric acid and 2-ethylaniline. This compound crystallizes in the monoclinic system with P21/c space group the unit cell dimensions are: a=16.220(4) Å, b=10.220(5) Å, c=20.328(4) Å, β=113.24(3)∘, Z=2, and V=3096.5(18) Å3. The atomic arrangement can be described by layers formed by cyclohexaphosphate anions P6O186− and water molecules connected by hydrogen bonds O–H⋯O. These inorganic layers are developed around bc planes at x=1/2 and are interconnected by the H-bonds created by ammonium groups of organic cations. All the hydrogen bonds, the van der Waals contacts and electrostatic interactions between the different entities give rise to a three-dimensional network in the structure and add stability to this compound. The thermal behaviour and the IR spectroscopic studies of this new cyclohexaphosphate are discussed.


Author(s):  
Graham Smith ◽  
Urs D. Wermuth

In the structure of the brucinium salt of 4-aminophenylarsonic acid (p-arsanilic acid), systematically 2,3-dimethoxy-10-oxostrychnidinium 4-aminophenylarsonate tetrahydrate, (C23H27N2O4)[As(C6H7N)O2(OH)]·4H2O, the brucinium cations form the characteristic undulating and overlapping head-to-tail layered brucine substructures packed along [010]. The arsanilate anions and the water molecules of solvation are accommodated between the layers and are linked to them through a primary cation N—H...O(anion) hydrogen bond, as well as through water O—H...O hydrogen bonds to brucinium and arsanilate ions as well as bridging water O-atom acceptors, giving an overall three-dimensional network structure.


Author(s):  
Dharmalingam Sivanesan ◽  
Hyung Min Kim ◽  
Yoon Sungho

The title complex, [Rh(C10H15)Cl(C14H12N2O4)]Cl·2C4H5NO3, has been synthesized by a substitution reaction of the precursor [bis(2,5-dioxopyrrolidin-1-yl) 2,2′-bipyridine-4,4′-dicarboxylate]chlorido(pentamethylcyclopentadienyl)rhodium(III) chloride with NaOCH3. The RhIIIcation is located in an RhC5N2Cl eight-coordinated environment. In the crystal, 1-hydroxypyrrolidine-2,5-dione (NHS) solvent molecules form strong hydrogen bonds with the Cl−counter-anions in the lattice and weak hydrogen bonds with the pentamethylcyclopentadienyl (Cp*) ligands. Hydrogen bonding between the Cp* ligands, the NHS solvent molecules and the Cl−counter-anions form links in a V-shaped chain of RhIIIcomplex cations along thecaxis. Weak hydrogen bonds between the dimethyl 2,2′-bipyridine-4,4′-dicarboxylate ligands and the Cl−counter-anions connect the components into a supramolecular three-dimensional network. The synthetic route to the dimethyl 2,2′-bipyridine-4,4′-dicarboxylate-containing rhodium complex from the [bis(2,5-dioxopyrrolidin-1-yl) 2,2′-bipyridine-4,4′-dicarboxylate]rhodium(III) precursor may be applied to link Rh catalysts to the surface of electrodes.


Sign in / Sign up

Export Citation Format

Share Document