High-pressure syntheses and crystal structures of orthorhombic DyGaO3 and trigonal GaBO3

2015 ◽  
Vol 70 (4) ◽  
pp. 207-214 ◽  
Author(s):  
Daniela Vitzthum ◽  
Stefanie A. Hering ◽  
Lukas Perfler ◽  
Hubert Huppertz

AbstractOrthorhombic dysprosium orthogallate DyGaO3 and trigonal gallium orthoborate GaBO3 were synthesized in a Walker-type multianvil apparatus under high-pressure/high-temperature conditions of 8.5 GPa/1350 °C and 8 GPa/700 °C, respectively. Both crystal structures could be determined by single-crystal X-ray diffraction data collected at room temperature. The orthorhombic dysprosium orthogallate crystallizes in the space group Pnma (Z = 4) with the parameters a = 552.6(2), b = 754.5(2), c = 527.7(2) pm, V = 0.22002(8) nm3, R1 = 0.0309, and wR2 = 0.0662 (all data) and the trigonal compound GaBO3 in the space group R3̅c (Z = 6) with the parameters a = 457.10(6), c = 1419.2(3) pm, V = 0.25681(7) nm3, R1 = 0.0147, and wR2 = 0.0356 (all data).

2009 ◽  
Vol 64 (9) ◽  
pp. 1032-1040 ◽  
Author(s):  
Stefanie A. Hering ◽  
Hubert Huppertz

Monoclinic holmium sesquioxide B-Ho2O3 and orthorhombic holmium orthogallate HoGaO3 were synthesized in a Walker-type multianvil apparatus under high-pressure / high-temperature conditions of 11.5 GPa / 1250 °C and 7.5 GPa / 1250 °C, respectively. Both crystal structures could be determined by single-crystal X-ray diffraction data, collected at r. t. The monoclinic holmium oxide crystallizes in the space group C2/m (Z = 6) with the parameters a = 1394.7(3), b = 350.83(7), c = 865.6(2) pm, β = 100.23(3)°, R1 = 0.0517, wR2 = 0.1130 (all data), and the orthorhombic compound HoGaO3 in Pnma (Z = 4) with the parameters a = 553.0(2), b = 753.6(2), c = 525.4(2) pm, R1 = 0.0222, and wR2 = 0.0303 (all data).


2010 ◽  
Vol 65 (10) ◽  
pp. 1206-1212 ◽  
Author(s):  
Almut Haberer ◽  
Reinhard Kaindl ◽  
Hubert Huppertz

The praseodymium orthoborate λ -PrBO3 was synthesized from Pr6O11, B2O3, and PrF3 under high-pressure / high-temperature conditions of 3 GPa and 800 °C in a Walker-type multianvil apparatus. The crystal structure was determined on the basis of single-crystal X-ray diffraction data, collected at room temperature. The title compound crystallizes in the orthorhombic aragonite-type structure, space group Pnma, with the lattice parameters a = 577.1(2), b = 506.7(2), c = 813.3(2) pm, and V = 0.2378(2) nm3, with R1 = 0.0400 and wR2 = 0.0495 (all data). Within the trigonal-planar BO3 groups, the average B-O distance is 137.2 pm. The praseodymium atoms are ninefold coordinated by oxygen atoms.


2007 ◽  
Vol 62 (6) ◽  
pp. 765-770 ◽  
Author(s):  
Holger Emme ◽  
Gunter Heymann ◽  
Almut Haberer ◽  
Hubert Huppertz

The compounds β -RE(BO2)3 [RE = Nd (neodymium meta-borate), Sm (samarium meta-borate) and Gd (gadolinium meta-borate)] were synthesized under high-pressure and high-temperature conditions in a Walker-type multianvil apparatus at 3.5 GPa (Nd), 7.5 GPa (Sm, Gd) and 1050 °C. The crystal structures were determined by single crystal X-ray diffraction data collected at r. t. (Sm, Gd) and at−73°C (Nd), respectively. The structures are isotypic with the already known ambient-pressure phases β -RE(BO2)3 (RE = (Tb, Dy) and the high-pressure phases β -RE(BO2)3 (RE = Ho-Lu)


2020 ◽  
Vol 75 (6-7) ◽  
pp. 605-613
Author(s):  
Daniela Vitzthum ◽  
Daniel S. Wimmer ◽  
Ingo Widmann ◽  
Hubert Huppertz

AbstractThe isotypic triel borates Al5B12O25(OH) and Ga4InB12O25(OH) were synthesized in a Walker-type multianvil apparatus under high-pressure/high-temperature conditions of 12.0 GPa/1400 °C and 12.3 GPa/1200 °C, respectively. The crystal structures of both compounds, determined by single-crystal X-ray diffraction, constitute new representatives of the structure type M5B12O25(OH) (M = Ga, In) crystallizing in the space group I41/acd. The presence of the hydroxyl groups was confirmed via single-crystal IR spectroscopy.


2019 ◽  
Vol 74 (4) ◽  
pp. 357-363
Author(s):  
Daniela Vitzthum ◽  
Hubert Huppertz

AbstractThe mixed cation triel borate Ga4In4B15O33(OH)3 was synthesized in a Walker-type multianvil apparatus at high-pressure/high-temperature conditions of 12.5 GPa and 1300°C. Although the product could not be reproduced in further experiments, its crystal structure could be reliably determined via single-crystal X-ray diffraction data. Ga4In4B15O33(OH)3 crystallizes in the tetragonal space group I41/a (origin choice 2) with the lattice parameters a = 11.382(2), c = 15.244(2) Å, and V = 1974.9(4) Å3. The structure of the quaternary triel borate consists of a complex network of BO4 tetrahedra, edge-sharing InO6 octahedra in dinuclear units, and very dense edge-sharing GaO6 octahedra in tetranuclear units.


Author(s):  
Michel Fleck ◽  
Ekkehart Tillmanns ◽  
Ladislav Bohatý ◽  
Peter Held

AbstractThe crystal structures of eight different L-malates have been determined and refined from single-crystal X-ray diffraction data. The compounds are the monoclinic (space groupIn addition, for all the compounds, powder diffraction data were collected, analysed and submitted to the powder diffraction file (PDF).


1975 ◽  
Vol 30 (3-4) ◽  
pp. 277-278 ◽  
Author(s):  
Hans-L. Keller ◽  
Karl-H. Meier ◽  
Hk. Müller-Buschbaum

Single crystals of SrPbO3 could be prepared by oxygen-high-pressure-synthesis (PO2 > 3500 at, t = 450°C). Single crystal X-ray diffraction data confirm the space group D2h16-Pnma. SrPbO3 belongs to the orthorhombic distorted Perowskit type with a = 5.964, b = 8.320, c = 5.860 Å. The atomic positions were refined.


2011 ◽  
Vol 66 (2) ◽  
pp. 107-114 ◽  
Author(s):  
Stephanie C. Neumair ◽  
Johanna S. Knyrim ◽  
Oliver Oeckler ◽  
Reinhard Kaindl ◽  
Hubert Huppertz

The cubic iron hydroxy boracite Fe3B7O13OH・1.5H2O was synthesized from Fe2O3 and B2O3 under high-pressure/high-temperature conditions of 3 GPa and 960 °C in a modified Walker-type multianvil apparatus. The crystal structure was determined at room temperature by X-ray diffraction on single crystals. It crystallizes in the cubic space group F4̄3c (Z = 8) with the parameters a = 1222.4(2) pm, V = 1.826(4) nm3, R1 = 0.0362, and wR2 = 0.0726 (all data). The B-O network is similar to that of other cubic boracites.


2003 ◽  
Vol 59 (5) ◽  
pp. 606-610 ◽  
Author(s):  
Digamber G. Porob ◽  
T. N. Guru Row

A series of M 0.5Bi3P2O10 compounds with M = Ca, Sr, Ba and Pb have been synthesized in MO–Bi2O3–P2O5 ternary systems by the ceramic method and the crystal structures were then solved using single-crystal X-ray diffraction data. These compounds are isostructural with Bi6.67P4O20 (triclinic, space group P\bar 1, Z = 2). The structures consist of infinite chains of Bi2O2 units along the c axis formed by linking BiO8 and BiO6 polyhedra. These chains are interconnected by MO8 polyhedra forming two-dimensional layers in the ac plane. The phosphate tetrahedra are sandwiched between these layers.


2019 ◽  
Vol 74 (3) ◽  
pp. 289-295 ◽  
Author(s):  
Nataliya Gulay ◽  
Yuriy Tyvanchuk ◽  
Marek Daszkiewicz ◽  
Bohdan Stel’makhovych ◽  
Yaroslav Kalychak

AbstractTwo compounds in the Sc-Co-In system were obtained by arc-melting of the pure metals and their crystal structures have been determined using single crystal X-ray diffraction data. The structure of Sc3Co1.64In4 (space group P6̅, а=7.6702(5), c=3.3595(2) Å, Z=1, R1=0.0160, wR2=0.0301) belongs to the Lu3Co2−xIn4 type structure, which is closely related to the ZrNiAl and Lu3CoGa5 types. The structure of Sc10Co9In20 (space group P4/nmm, а=12.8331(1), c=9.0226(1) Å, Z=2, R1=0.0203, wR2=0.0465) belongs to the Ho10Ni9In20 type, which is closely related to HfNiGa2.


Sign in / Sign up

Export Citation Format

Share Document