Influence of Electron Injection Rate in Triphenylamine Based Dye for Dye-Sensitized Solar Cells: A First Principle Study

2019 ◽  
Vol 233 (9) ◽  
pp. 1247-1259
Author(s):  
Madhu Prakasam

Abstract In this work, we systematically investigate the impacts of electron-donor based on Triphenylamine (TPA). The Geometry structure, energy levels, light-harvesting ability and ultraviolet-visible absorption spectra were calculated by using Density Functional Theory (DFT) and Time-Dependent-DFT. The electron injection rate of the TPA-N(CH3)2 based dyes has 0.71 eV for high among the dye sensitizer. The First and Second order Hyperpolarizability of the 11.95 × 10−30 e.s.u and 12195.54 a.u, respectively for TPA-N(CH3)2 based dye. The calculated absorption spectra were showed in the ultra-violet visible region for power conversion region. The study reveals that the electron transfer character of TPA-N(CH3)2 based dyes can be made suitable for applications in Dye-Sensitized Solar Cells.

Author(s):  
Sevil ŞENER

The synthesis and spectroscopic characterization of an innovative ball-type cobalt (II)  metallophthalocyanine 4, bridged by four 1,2-bis(2-hydroxymethyl)-O-carborane (HMOC) 1 units has been achieved. The structure of 4 was characterized via elemental analysis, UV–visible absorption spectroscopy, FT-IR spectroscopy, and MALDI-TOF mass spectrometry. The photovoltaic performance of the newly synthesized compound in dye-sensitized solar cells was investigated. In order to clarify the effect of dye-sensitization time on photovoltaic performance parameters, the sensitization time was varied from 12 to 60 h and the performance parameters were investigated. It was found that sensitization time had a strong effect on the main performance parameters. The best photovoltaic performance was achieved after sensitization for 36 h (short circuit current density, 6.41 mA cm−2; overall conversion efficiency, 3.42%). Geometry optimization of the molecule was performed using density functional theory and shows a peripheral structure.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Umer Mehmood ◽  
Ibnelwaleed A. Hussein ◽  
Muhammad Daud

1,3,4-Oxadiazole based photosensitizers with biphenyl, naphthalene, anthracene, and triphenylamine as the electron-donating moiety were synthesized for solar cell applications. In these photosensitizers, cyano groups were introduced as the electron acceptor and the anchor group because of their high electron-withdrawing ability and strong bonding to the semiconductor. Oxadiazole isomers were used as theπ-conjugation system, which bridges the donor-acceptor systems. The electrochemical and optical properties of the sensitizers were investigated both in their native form and upon incorporation into dye sensitized solar cells. The results of UV-visible absorption spectroscopy, electrochemical impedance spectroscopic measurements, and photocurrent voltage characteristics indicate that 1,3,4-oxadiazole pi-spacer with the anthracene moiety has the highest efficiency of 2.58%. Density functional theory was employed to optimize the structures of the sensitizers and the TiO2cluster.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Rody Soto-Rojo ◽  
Jesús Baldenebro-López ◽  
Daniel Glossman-Mitnik

Eight coumarin derivative dyes were studied by varying theπ-bridge size with different thiophene and thiazole units for their potential use in dye-sensitized solar cells (DSSC). Geometry optimization, the energy levels and electron density of the Highest Occupied Molecular Orbital and the Lowest Unoccupied Molecular Orbital, and ultraviolet-visible absorption spectra were calculated by Density Functional Theory (DFT) and Time-Dependent-DFT. All molecular properties were analyzed to decide which dye was the most efficient. Furthermore, chemical reactivity parameters, such as chemical hardness, electrophilicity index, and electroaccepting power, were obtained and analyzed, whose values predicted the properties of the dyes in addition to the rest of the studied molecular properties. Our calculations allow us to qualitatively study dye molecules and choose the best for use in a DSSC. The effects ofπ-bridges based on thiophenes, thiazoles, and combinations of the two were reviewed; dyes with three units mainly of thiazole were chosen as the best photosensitizers for DSSC.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Shuxian Wei ◽  
Xiaoqing Lu ◽  
Xiaofan Shi ◽  
Zhigang Deng ◽  
Yang Shao ◽  
...  

The design of light-absorbent sensitizers with sustainable and environment-friendly material is one of the key issues for the future development of dye-sensitized solar cells (DSSCs). In this work, a series of organic sensitizers incorporating alkoxy-substituted triphenylamine (tpa) donors and binaryπ-conjugated bridges were investigated using density functional theory (DFT) and time-dependent DFT (TD-DFT). Molecular geometry, electronic structure, and optical absorption spectra are analyzed in the gas phase, chloroform, and dimethylformamide (DMF) solutions. Our results show that properly choosing the heteroaromatic atoms and/or adding one more alkoxy-substituted tpa group can finely adjust the molecular orbital energy. The solvent effect renders the HOMO-LUMO gaps of the tpa-based sensitizers decrease in the sequence of DMF solution < chloroform solution < gas phase. The absorption spectra are assigned to the ligand-to-ligand charge transfer (LLCT) characteristics via transitions mainly from tpa, 3,4-ethylenedioxythiophene (edot), and alkyl-substituted dithienosilole (dts) groups to edot, dts, and cyanoacrylic acid groups. The binaryπ-conjugated bridges play different roles in balancing the electron transfer and recombination for the different tpa-based sensitizers. The protonation/deprotonation effect has great effect on the HOMO-LUMO gaps and thus has great influence on the bands at the long wavelength region, but little influence on the bands at the short wavelength region.


2015 ◽  
Vol 19 (05) ◽  
pp. 695-707 ◽  
Author(s):  
Sandeep B. Mane ◽  
Liyang Luo ◽  
Hsin-Han Tsai ◽  
Chen-Hsiung Hung

Co-sensitization of two or more sensitizers with complementary absorption profiles had been utilized as an imperative tool to achieve panchromatic sensitization in dye-sensitized solar cells. The highly efficient dye-sensitized solar cells consist of a co-sensitization system comprising of a mixture of porphyrin and organic dye. We have prepared four novel free-base and zinc porphyrins in minimum steps and examined their individual as well as co-sensitized performance in dye-sensitized solar cells. The UV-visible spectrum suggests that upon zinc insertion the absorption wavelength is red-shifted by 10 nm in both Soret and Q-band region. The density functional theory (DFT) calculations revealed that the presence of an electron withdrawing cyanoacrylic acid as the anchoring group has pronounced effect on the charge distribution. IPCE spectra suggest that the co-sensitization of a free-base porphyrin with a zinc porphyrin resulted in panchromatic absorption in whole visible region. The device made with Mix-2, which is composed from the free-base porphyrin N4CN and the zinc porphyrin N4ZnCN gave the best performance with an overall photon-to-current conversion efficiency of 4.18%, with Jsc of 10.4 mA.cm-2, Voc of 0.56 V and fill factor of 72%.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3918
Author(s):  
Ratshilumela S. Dima ◽  
Lutendo Phuthu ◽  
Nnditshedzeni E. Maluta ◽  
Joseph K. Kirui ◽  
Rapela R. Maphanga

Titanium dioxide (TiO2) polymorphs have recently gained a lot of attention in dye-sensitized solar cells (DSSCs). The brookite polymorph, among other TiO2 polymorphs, is now becoming the focus of research in DSSC applications, despite the difficulties in obtaining it as a pure phase experimentally. The current theoretical study used different nonmetals (C, S and N) and (C-S, C-N and S-N) as dopants and co-dopants, respectively, to investigate the effects of mono-doping and co-doping on the electronic, structural, and optical structure properties of (210) TiO2 brookite surfaces, which is the most exposed surface of brookite. The results show that due to the narrowing of the band gap and the presence of impurity levels in the band gap, all mono-doped and co-doped TiO2 brookite (210) surfaces exhibit some redshift. In particular, the C-doped, and C-N co-doped TiO2 brookite (210) surfaces exhibit better absorption in the visible region of the electromagnetic spectrum in comparison to the pure, S-doped, N-doped, C-S co-doped and N-S co-doped TiO2 brookite (210) surfaces.


Molecules ◽  
2020 ◽  
Vol 25 (1) ◽  
pp. 198 ◽  
Author(s):  
Michèle Chevrier ◽  
Alberto Fattori ◽  
Laurent Lasser ◽  
Clément Kotras ◽  
Clémence Rose ◽  
...  

Chlorophyll a derivatives were integrated in “all solid-state” dye sensitized solar cells (DSSCs) with a mesoporous TiO2 electrode and 2′,2′,7,7′-tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9′-spirobifluorene as the hole-transport material. Despite modest power conversion efficiencies (PCEs) between 0.26% and 0.55% achieved for these chlorin dyes, a systematic investigation was carried out in order to elucidate their main limitations. To provide a comprehensive understanding of the parameters (structure, nature of the anchoring group, adsorption …) and their relationship with the PCEs, density functional theory (DFT) calculations, optical and photovoltaic studies and electron paramagnetic resonance analysis exploiting the 4-carboxy-TEMPO spin probe were combined. The recombination kinetics, the frontier molecular orbitals of these DSSCs and the adsorption efficiency onto the TiO2 surface were found to be the key parameters that govern their photovoltaic response.


2014 ◽  
Vol 43 (10) ◽  
pp. 4127-4136 ◽  
Author(s):  
Tracy E. Hewat ◽  
Lesley J. Yellowlees ◽  
Neil Robertson

[Cu(i)(dipyrrin)(bipy)] complexes have been prepared and show intense visible absorption leading to function as sensitizing dyes in solar cells.


Sign in / Sign up

Export Citation Format

Share Document