scholarly journals Forecast of Wind Speed with a Backpropagation Artificial Neural Network in the Isthmus of Tehuantepec Region in the State of Oaxaca, Mexico

2012 ◽  
Vol 22 ◽  
pp. 7-14 ◽  
Author(s):  
Ernesto Cortés Pérez ◽  
Airel Nuñez Rodríguez ◽  
Rosa Edith Moreno De La Torre ◽  
Orlando Lastres Danguillecourt ◽  
José Rafael Dorrego Portela

This paper presents the preliminary results of setting up an artificial neural network (ANN) of the feed forward type with the backpropagation training method for forecast wind speed in the region in the Isthmus of Tehuantepec, Oaxaca, Mexico. The database used covers the years from June 2008 - November 2011, and was supplied by a meteorological station located at the Isthmus University campus Tehuantepec. The experiments were done using the following variables: wind speed, pressure, temperature and date. At the same time were done seven tests combining these variables, comparing their mean square error (MSE) and coefficient correlation r, with data the predicting and experimental. In this research, is proposed a ANN of two hidden layers, for a forecast of 48 hours.

2015 ◽  
Vol 16 (6) ◽  
pp. 1135-1144

<div> <p>Wind Energy is one of the important sources of renewable energy. There is a need to prepare the availability of wind energy in the area where there is no measured wind speed data. For this type of situation, it seems to be necessary to predict the wind energy potential using such as wind speed using artificial neural network (ANN) method. Soft computing techniques are widely used now days in the study of wind energy potential estimation. In this study the wind energy potential between neighborhood meteorological tower stations is predicted using Artificial Neural Network technique. One of the most suitable areas of Tamil Nadu for wind power generation is some locations in the districts of Tirunelveli, Thoothukudi, Kanyakumari, Theni, Coimbatore, and Dindigul. Along the southeast coastline of Tamil Nadu there are no valleys and mountains besides the mountains are situated away from the sea coast in many regions. Therefore, these regions are exposed to northerly winds that are not as strong as the southerly winds.</p> </div> <p>&nbsp;</p>


2019 ◽  
Vol 20 (2) ◽  
pp. 152
Author(s):  
Indra Cahyadi ◽  
Heri Awalul Ilhamsah ◽  
Ika Deefi Anna

In recent years, Indonesia needs import million tons of salt to satisfy domestic industries demand. The production of salt in Indonesia is highly dependent on the weather. Therefore, this article aims to develop a prediction model by examining rainfall, humidity and wind speed data to estimate salt production. In this research, Artificial Neural Network (ANN) method is used to develop a model based on data collected from Kaliumenet Sumenep Madura.  The model analysis uses the full experimental factorial design to determine the effect of the ANN parameter differences. Then, the selected model performance compared with the estimate predictor of Holt-Winters. The results present that ANN-based models are more accurate and efficient for predicting salt field productivity.


2019 ◽  
Vol 20 (2) ◽  
pp. 48
Author(s):  
Indra Cahyadi ◽  
Heri Awalul Ilhamsah ◽  
Ika Deefi Anna

In recent years, Indonesia needs import million tons of salt to satisfy domestic industries demand. The production of salt in Indonesia is highly dependent on the weather. Therefore, this article aims to develop a prediction model by examining rainfall, humidity and wind speed data to estimate salt production. In this research, Artificial Neural Network (ANN) method is used to develop a model based on data collected from Kaliumenet Sumenep Madura.  The model analysis uses the full experimental factorial design to determine the effect of the ANN parameter differences. Then, the selected model performance compared with the estimate predictor of Holt-Winters. The results present that ANN-based models are more accurate and efficient for predicting salt field productivity.


2019 ◽  
Vol 12 (3) ◽  
pp. 145 ◽  
Author(s):  
Epyk Sunarno ◽  
Ramadhan Bilal Assidiq ◽  
Syechu Dwitya Nugraha ◽  
Indhana Sudiharto ◽  
Ony Asrarul Qudsi ◽  
...  

2020 ◽  
Vol 38 (4A) ◽  
pp. 510-514
Author(s):  
Tay H. Shihab ◽  
Amjed N. Al-Hameedawi ◽  
Ammar M. Hamza

In this paper to make use of complementary potential in the mapping of LULC spatial data is acquired from LandSat 8 OLI sensor images are taken in 2019.  They have been rectified, enhanced and then classified according to Random forest (RF) and artificial neural network (ANN) methods. Optical remote sensing images have been used to get information on the status of LULC classification, and extraction details. The classification of both satellite image types is used to extract features and to analyse LULC of the study area. The results of the classification showed that the artificial neural network method outperforms the random forest method. The required image processing has been made for Optical Remote Sensing Data to be used in LULC mapping, include the geometric correction, Image Enhancements, The overall accuracy when using the ANN methods 0.91 and the kappa accuracy was found 0.89 for the training data set. While the overall accuracy and the kappa accuracy of the test dataset were found 0.89 and 0.87 respectively.


2020 ◽  
Vol 38 (2A) ◽  
pp. 255-264
Author(s):  
Hanan A. R. Akkar ◽  
Sameem A. Salman

Computer vision and image processing are extremely necessary for medical pictures analysis. During this paper, a method of Bio-inspired Artificial Intelligent (AI) optimization supported by an artificial neural network (ANN) has been widely used to detect pictures of skin carcinoma. A Moth Flame Optimization (MFO) is utilized to educate the artificial neural network (ANN). A different feature is an extract to train the classifier. The comparison has been formed with the projected sample and two Artificial Intelligent optimizations, primarily based on classifier especially with, ANN-ACO (ANN training with Ant Colony Optimization (ACO)) and ANN-PSO (training ANN with Particle Swarm Optimization (PSO)). The results were assessed using a variety of overall performance measurements to measure indicators such as Average Rate of Detection (ARD), Average Mean Square error (AMSTR) obtained from training, Average Mean Square error (AMSTE) obtained for testing the trained network, the Average Effective Processing Time (AEPT) in seconds, and the Average Effective Iteration Number (AEIN). Experimental results clearly show the superiority of the proposed (ANN-MFO) model with different features.


Sign in / Sign up

Export Citation Format

Share Document